
Automated Testing of Bluetooth Connectivity

Technical Brief 20100202 from Missing Link Electronics:

Automated Testing of Bluetooth Connectivity

Testing Bluetooth is hard. Harder when development-cycles of the connection partners

significantly differ, such as those of mobile phones and their counterparts in the automotive

or industrial field. It gets even harder when the systems under test have to fulfill the high

expectations consumers have.

This technical brief describes a setup for automated testing of Bluetooth connectivity. At

first a short overview over Bluetooth is given. Afterwards different setups utilizing the MLE

1000 Series Rapid Prototyping System and the power of the MLE Linux operating system

are described. Furthermore a framework for automation of Bluetooth testing and chip level

analysis of Bluetooth communication is demonstrated. Then we have a detailed look on a

Hands Free Profile communication. Finally more advanced testing methods, which make

use of the FPGA in the MLE 1000 Series Rapid Prototyping System are mentioned.

Copyright © 2010 Missing Link Electronics, Inc. All rights reserved. Missing Link Electronics, the stylized Missing Link
Electronics MLE logo are the service mark and/or trademark of Missing Link Electronics, Inc. All other product or service
names and trademarks are the property of their respective owners.

Technical Brief 20100202 www.MLEcorp.com Page 1

Automated Testing of Bluetooth Connectivity

— Technical Brief 20100202 —

At present, there are two major standards for wireless connectivity between two devices

within a radius of up to 100 meters: WLAN and Bluetooth®. While WLAN aims for replacing

cable based high bandwidth Ethernet connections, Bluetooth was designed for replacing a

large variety of different cable connections, such as serial cables, audio cables, and printer

cables. Because of this versatility and its interference-proofness Bluetooth has become the

most commonly used standard for wireless connectivity between mobile phones and PCs,

headsets, home and car audio systems, and external GPS devices.

CAN

Ethernet

LVDS

A

Figure 1: Automated Bluetooth Testing Scenario

In the following we will take the connection between a mobile phone and an automotive

headunit as an example for a typical connection of two consumer devices with significantly

different development- and life-cycles and high expectations on the customer side. Figure 1

shows a typical setup of a automated Bluetooth testing scenario, based on the MLE 1000

Series Rapid Prototyping System.

Figure 2: Scenarios B and C: Bluetooth Connectivity

As Bluetooth is designed for communication between two devices there are three different

scenarios: The first scenario (A) is a direct communication between the mobile phone and

the headunit. The second scenario (B) is a communication between the mobile phone and

the MLE 1000 Series Rapid Prototyping System. The third scenario (C) is the communica-

tion between the headunit and the MLE 1000 Series Rapid Prototyping System. Obviously

scenarios (B) and (C) can be combined to mimic scenario (A). The workstation in Figure 1

Technical Brief 20100202 www.MLEcorp.com Page 2

Automated Testing of Bluetooth Connectivity

can either be used during the automated testing for live monitoring or afterwards for a

detailed analysis of the recorded transmissions.

Automated testing has many advantages: Tests can be more reproducable. Automated

testing can eliminate false positives unlinke manual testing. To achieve a high coverage of

automated tests it helps to have a large set of simulation models for mobile phones as it is

not sufficient to only test for conformance to standards like Hands Free Protocol or A2DP.

The MLE 1000 Series Rapid Prototyping System offers the full power of a Linux based

workstation combined with a large variety of common interfaces. These interfaces can

seamlessly be integrated into the automated testing process. With full control over both

hard- and software, the creation of Bluetooth packet dumps and timestamping can be done

at any level, from user interface down to communication between the controller and the

interface phy. Tests can be programmed in high level programming languages like C or

C++ , or even scripted in python, perl or bash. The Linux ecosystem around the testing

program provides a lot more: For example test data can be sent via ethernet or saved on

large external storage disks connected to USB.

Using the CAN interfaces it is quite simple to automatically control the headunit under

test. With LVDS interfaces of the MLE 1000 Series Rapid Prototyping System it is even

possible to capture the contents of the headunit’s displays (refer to MLE Technical Brief

20100129 [MLETB]).

In the following, we will give a short overview over Bluetooth and two example scenarios

employing the MLE 1000 Series Rapid Prototyping System and afterwards have a detailed

look at a recorded handsfree protocol session.

Bluetooth is a wireless communication standard, which is standardized as IEEE 802.15.1.

It utilizes the free 2.4 Ghz Industrial, Scientific and Medical (ISM) band with a fast frequency

hopping technique to prevent the communication from being “jammed” by other devices

in this band. Bluetooth devices are categorized into different classes according to their

communication range. Class 1 devices can communicate over 100 meters, whereas class 2

and class 3 devices are for short distances of 10 and 1 meters respectively. The achievable

theoretical data rates range between 24 MBit/s in Version 3.0 + HS (High Speed) down to

1 MBit/s and 3 MBit/s in Version 1.2 and Version 2.0 + EDR (Enhanced Data Rate).

With its aim to replace a large set of different cables by wireless connectivity, the Blue-

tooth standard not only defines the radio and baseband level, but also the interface to the

baseband controller and link manager, the so called Host Controller Interface (HCI). For

easy replacement of cable based connections the Bluetooth standards also comprise a

large set of protocols on top of the data layer that (from an application programmer’s point

of view) provide the interface known from the wired connection, e.g. BNEP (Bluetooth

Network Encapsulation Protocol) offers encapsulation of ethernet over the Bluetooth layer,

so technically any program that already utilizes Ethernet can be routed over a bluetooth

connection without changes in the software, as long as the connection is established by a

controlling application and the bandwidth and latency of Bluetooth is sufficient. Apart from

those standard communication links there is also a number of protocols that are specific to

Bluetooth, e.g. the Hands Free Protocol (HFP). The multiple layers in the Bluetooth frame-

work can be visualized as in Figure 3. To give a short overview over the variety of protocols

Technical Brief 20100202 www.MLEcorp.com Page 3

Automated Testing of Bluetooth Connectivity

belonging to Bluetooth Table 1 at the end of this document gives an excerpt of the most

common protocols.

Figure 3: Bluetooth Layer Model.

A quick research shows that the most commonly used Bluetooth chipsets for mobile phone

and headunit applications are those from Broadcom, Cambridge Silicon Radio, Texas In-

struments and Philips. Nevertheless, there is a significant number of other vendors avail-

able, most of which are mentioned in [PALO]. The MLE 1000 Series Rapid Prototyping

System currently is equipped with a Bluetooth USB stick that uses the Cambridge Sili-

con Radio BlueCore 4 chipset. These chipsets can easily be identified via their USB ID

0a12:0001. Our engineering team uses these chipsets because they are widely available

— even typical smartphones like the Apple iPhone 3G use them — and we experienced

least problems with these chips. Of course, the Missing Link Electronics system also sup-

ports a large variety of other Bluetooth chips out of the box, in case the chipset matters.

That is because the MLE 1000 Series Rapid Prototyping System utilizes the BlueZ Blue-

tooth stack on top of the Linux kernel.

Bluetooth is a standard for interlinking two usually different partners: One being a master

and the other being a slave. Thus for testing purposes there are two significantly different

test setups. One in which the tester simulates being the slave device and one where the

tester simulates being the master device. The first setup utilizes the MLE 1000 Series

Rapid Prototyping System as a slave to a mobile phone master and mimics a generic

hands free unit according to the hands free specification. All reactions of the mobile phone

to the stimuli are recorded for later playback in headunit testing. As seen in scenario

(B) of Figure 2, the MLE 1000 Series Rapid Prototyping System behaves equivalent to a

headunit as in scenario B from the automated testing system. Based on the OpenSource

project nohands [SFNH] the hands free deamon can log the entire communication between

the mobile phone and the simulated headunit at protocol-level. Via the hidump utility there

is also a dump on HCI level available.

Technical Brief 20100202 www.MLEcorp.com Page 4

Automated Testing of Bluetooth Connectivity

Figure 4 shows a screenshot of a MLE 1000 Series Rapid Prototyping System runninghfonsole from the nohands project for connecting to a mobile phone via HFP1.5. In the

background you can see the results from a simple Bluetooth discovery utility.

Figure 4: Hands Free Console hfonsole for Bluetooth testing.

In the second setup a MLE 1000 Series Rapid Prototyping System mimics a generic mo-

bile phone operating as a Bluetooth master and connects to an automotive headunit as

shown in scenario (C) of Figure 2. This is possible because the MLE 1000 Series Rapid

Prototyping System can also simulate being a mobile phone and thus can, for example,

connect to automotive headunits. With information previously recorded from scenario B

it is also possible to simulate certain behaviour patterns of certain mobile phones. Some

headunits use the AT+CGMI and the AT+CGMM commands, which request the manufacturer

and model, to identify which phone is about to connect. At the moment typical headunits

do not initiate pairing, although this case can easily be added to the current setup. Apart

from protocol-level based dumps the whole communication can be recorded on HCI level

to storage devices attached to the MLE 1000 Series Rapid Prototyping System or transmit-

ted in realtime via IP based services to a workstation. As shown in Figure 5 those dumps

can then be further analyzed on any workstation running the powerfull network protcol

analyzing tool wireshark [WIRE].

Technical Brief 20100202 www.MLEcorp.com Page 5

Automated Testing of Bluetooth Connectivity

Figure 5: Wireshark view of a Bluetooth HCI dump

Technical Brief 20100202 www.MLEcorp.com Page 6

Automated Testing of Bluetooth Connectivity

Furthermore the MLE 1000 Series Rapid Prototyping System is able to record the signal

strength of the Bluetooth connection, which may be useful in finding and analyzing prob-

lems. Apart from such connection specific information MLE 1000 Series Rapid Prototyping

System also enables easy discovery of visible Bluetooth devices and service discovery

protocol-level based verification of announced services. For debugging purposes the man-

ufacturer ID of visible Bluetooth devices can also be read and logged.

Listing 1:

class BrsfCommand : public AtCommand {
i n t m_brsf ;

public :
BrsfCommand(HfpSession * sessp , i n t caps)

: AtCommand (sessp) , m_brsf (0) {
char tmpbuf [3 2] ;
s p r i n t f (tmpbuf , "AT+BRSF=%d " , caps) ;
SetText (tmpbuf) ;

}

bool Response(const char * buf) {
i f (! strncmp (buf , "+BRSF: " , 6)) {

i n t pos = 6 ;
while (IsWS (buf [pos])) { pos++; }

/ * Save the ou tpu t * /
m_brsf = s t r t o l (& buf [pos] , NULL, 0) ;

}
return fa lse ;

}

bool OK(void) {
GetSession()−>SetSuppor tedFeatures(m_brsf) ;
i f (GetSession()−>FeatureThreeWayCal ling ()) {

(void) GetSession()−>AddCommand(
new ChldTCommand(GetSession ()) , false , 0) ;

}
return AtCommand : : OK() ;

}
void ERROR(void) {

/ *
* Supported f ea t u r es can a lso come from the

* SDP record o f the device , and i f we i n i t i a t e d

* the connect ion , we should have them . I f not ,

* we could get them , but we don ’ t , a t l eas t not ye t .

* /
AtCommand : :ERROR() ;

}
} ;

Listing 1: BRSF-Command as Example of AT-Command class

In the following we will show implementation details of the hands free kit part. Afterwards

we will show an excerpt of a log taken from a communication between two MLE 1000

Series Rapid Prototyping System. The log shows the handshake on service level between

a hands free kit and an audio gateway. Due to readability this paper will refer to the hands

free kit as a headunit and to the audio gateway as a mobile phone.

Technical Brief 20100202 www.MLEcorp.com Page 7

Automated Testing of Bluetooth Connectivity

Listing 2:

bool HfpSession : :
HfpHandshake (E r r o r I n f o * e r r o r)
{

asser t (m_conn_state == BTS_Handshaking) ;

/ * This gets cleaned up by RfcommSession * /
asser t (m_rfcomm_not == 0) ;
m_rfcomm_not = GetDi()−>NewSocket(m_rfcomm_sock, fa lse) ;
m_rfcomm_not−>Reg is te r (this , &HfpSession : : HfpDataReady) ;

i f (! AddCommand(new BrsfCommand(this , GetService()−>m_brsf_my_caps) ,
false , e r r o r) | |

! AddCommand(new CindTCommand(this) , false , e r r o r) | |
! AddCommand(new CmerCommand(this) , false , e r r o r) | |
! AddCommand(new ClipCommand (this) , false , e r r o r) | |
! AddCommand(new CcwaCommand(this) , false , e r r o r))

return fa lse ;

return true ;
}

Listing 2: Handshake implementation for HFP1.5

Missing Link Electronics utilizes the nohands OpenSource project because of its flexible

object oriented approach. This approach allows simple extensions to existing code with-

out the risk of breaking functionality. Listings 1 and 2 show C++ source code taken fromlibhfp/hfp.pp. Listing 1 shows an extension to the class of AT commands taking theAT+BRFS command, which is used for requesting supported features, as an example. TheAtCommand::Response method allows running checks on the answer received after the

command has been issued. An example of how to issue such commands can be seen

in listing 2, which shows the implementation of a handshake according to the hands free

protocol. All commands which are to be issued are added to a FIFO using the AddCommand
function and thus provide a very flexible interface in terms of adapting sequences of com-

mands to different pre-recorded situations.

To give an example what is possible we will have a detailed look on a communication

between to MLE 1000 Series Rapid Prototyping System. One MLE 1000 Series Rapid

Prototyping System mimics a mobile phone and the other one mimics a Hands Free Kit.

The MLE 1000 Series Rapid Prototyping System emulates a Hands Free Kit is used for

logging the communication. The log is presented on the left column and the right column

is used for short explanations of the log. The log shows the initialization sequence accord-

ing to the Hands Free Protocol v1.5. The sequence of commands recorded equals the

sequence of commands sent by the source code from Listing 2.HFP_LOG_DAEMON: HCI Command status:0x00 0x01 0x0405HFP_LOG_DAEMON: HCI Command status:0x00 0x01 0x041bHFP_LOG_DAEMON: HCI Command status:0x00 0x01 0x0419HFP_LOG_DAEMON: HCI Name request omplete (0):"00:09:DD:60:FE:D6" -> "MLE1k2-007"
The MLE 1000 Series Rapid Prototyping

System will not only log on protocol-level,

but also on HCI level. Thus low level con-

nection setup parts are also logged, as seen

on the left the Bluetooth name of the hand-

set is requested

In the following we will see a typical communication according to the HFP1.5 protocol

standard. All outgoing data is visualized using << and all incoming data is visualized using>>.

Technical Brief 20100202 www.MLEcorp.com Page 8

Automated Testing of Bluetooth Connectivity

The service level connection initialization procedure is a predefined sequence of com-

mands to negotiate capabilities and settings. According to the standard, first in the initial-

ization the hands free kit (headunit) shall send the AT+BRSF=<headunit supported fea-

tures> command to the mobile phone (Audio Gateway) to both notify the mobile phone of

the supported features in the headunit, as well as to retrieve the supported features in the

mobile phone using the +BRSF result code.HFP_LOG_DAEMON: << AT+BRSF=63 The headunit sends its supported fea-

tures.HFP_LOG_DAEMON: >> +BRSF: 352 The mobile phone answers with its sup-

ported features. So the intersection be-

tween those two supported feature sets can

be used for further communication.HFP_LOG_DAEMON: >> OK Any command the mobile phone receives

has to be acknowledged. This is done via OK
whenever the mobile phone knows the com-

mand and has processed the command cor-

rectly. In case of an unknown command or in

the event of an error the mobile phone shall

answer with ERROR.HFP_LOG_DAEMON: << AT+CIND=? This query from the headunit to the mobile

phone is a read request. The read request

can be identified by the =? token. TheAT+CIND=? command is used for querying

a list of indicators supported by the mobile

phone. A good example for an indicator is

field strength of the mobile signal or the bat-

tery charge level. This is information that

is typically displayed on the display of the

headunit.HFP_LOG_DAEMON: >> +CIND: ("batthg",(0-5)),("signal",(0-5)),("servie",(0,1)),("all",(0,1)),("allsetup",(0-3)),("allheld",(0-2)),("roam",(0,1))HFP_LOG_DAEMON: >> OK The mobile phone answers with a list of

its supported indicators. Each entry in the

list consists of an identification string and

the range of allowed values for the indica-

tor. However, indicators are not identified

by their identification string, but by the index

in this list. So the batthg indicator, which

holds the battery charge level, later on will

be refered by “1”, the signal indicator (for

signal strength) by “2” and so on.

Technical Brief 20100202 www.MLEcorp.com Page 9

Automated Testing of Bluetooth ConnectivityHFP_LOG_DAEMON: << AT+CMER=3,0,0,1HFP_LOG_DAEMON: >> OK The AT+CMER= command (Mobile Termina-

tion Event Reporting) is used for setting the

baviour of the mobile phone when an event

occures. In this case the headunit requests

to be directly notified (3) only on indicator

changes (,0,0,1). From now on the mobile

phone shall send a +CIEV notification when-

ever an indicator changes.HFP_LOG_DAEMON: << AT+CLIP=1HFP_LOG_DAEMON: >> OK The AT+CLIP= command (Calling Line

Identification Presentation) is used for set-

ting the behaviour of the mobile phone in the

event of an incoming call. In this case the

headunit reports to the mobile phone that

the headunit is capable of displaying phone

numbers and would like to be given these

phone numbers on incoming calls. From

now on after a call is received and signalled

via the +RING notification, the mobile phone

shall send a +CLIP notification to the head-

unit with information about the caller.HFP_LOG_DAEMON: << AT+CCWA=1HFP_LOG_DAEMON: >> OK The AT+CCWA= command (Call Waiting) is

used for setting whether a mobile phone

shall notify the headunit on incoming calls

or not. In this case the headunit requests

to be notified in the event of an incoming

call. From now on the mobile phone shall

send a +RING notification to the headunit in

the event of an incoming call.HFP_LOG_DAEMON: << AT+CIND? Apart from the AT+CIND=? command de-

scribed above, the AT+CIND? command is

used for actively requesting the values of the

indicators. This is done as a last step in

the initialization process, so that the head-

unit has defined and correct values for the

indicators.HFP_LOG_DAEMON: >> +CIND: 5,5,1,0,0,0,0HFP_LOG_DAEMON: >> OK The mobile phone responds to the query of

indicators. The response is a comma sep-

arated list with the values of the indicators.

The ordering of the indicators is same as re-

turned to the AT+CIND=? command above.

So for interpreting the values saving the as-

signment between index and indicator is im-

portant.

Technical Brief 20100202 www.MLEcorp.com Page 10

Automated Testing of Bluetooth Connectivity

We have shown that the MLE 1000 Series Rapid Prototyping System provides an easy way

to analyze a HFP communication. With the powerful Linux architecture in the background

these logs can easily be saved, searched and put into scripts both for replay and interactive

reactions using other interfaces like the CAN-Interface. Userspace tools like ansend andandump can be used to control an automotive headunit for automated testing. With the

flexible FPGA architecture it is even possible to automatically control a cellphone by con-

necting the FPGA to the phone, instead of its keypad. Moreover, the LVDS-capabilities of

the MLE 1000 Series Rapid Prototyping System can even make it possible to capture the

contents of a headunit’s display and with the whole Linux ecosystem around even simple

OCR may be possible, e.g. for verification of contacts displayed by the headunit transmitted

via OBEX/PBAP.

References

[PALO] Palo Pacific Technology, Pty Ltd:

Palowireless Wireless Resource Center, retrieved January 2010.http://www.palowireless.om/database/bthipsets.asp
[HFP1.5] Bluetooth Special Interest Group (SIG):

HANDS-FREE PROFILE 1.5, November 2005.http://www.bluetooth.om/NR/rdonlyres/C0F90A55-BDE4-4FB3-A4FF-DAB0F137DBDF/1762/HFP15_SPEC_V10r00.pdf
[SFNH] Sourceforge.net:

nohands: HFP for Linux.http://nohands.soureforge.net
[WIRE] Wireshark.org:

Wireshark - the world’s foremost network protocol analyzer.http://www.wireshark.org
[MLETB] Missing Link Electronics:

TB 20100129: Deep Image Analysis for Multimedia Systems, 2010.http://www.missinglinkeletronis.om/MLE-TB20100129

Technical Brief 20100202 www.MLEcorp.com Page 11

http://www.palowireless.com/database/btchipsets.asp
http://www.bluetooth.com/NR/rdonlyres/C0F90A55-BDE4-4FB3-A4FF-DAB0F137DBDF/1762/HFP15_SPEC_V10r00.pdf
http://www.bluetooth.com/NR/rdonlyres/C0F90A55-BDE4-4FB3-A4FF-DAB0F137DBDF/1762/HFP15_SPEC_V10r00.pdf
http://nohands.sourceforge.net
http://www.wireshark.org
http://www.missinglinkelectronics.com/MLE-TB20100129

Automated Testing of Bluetooth Connectivity

Protocol Description MLE

sup-

ported

LMP (Link Management

Protocol)

Controls radio link between two devices yes

L2CAP (Logical Link

Control & Adaption

Protocol)

Multiplexing multiple protocol layer

connections between two devices

yes

SDP (Service Discovery

Protocol)

Discovers services provided by devices

known or visible

yes

HCI (Host/Controller

Interface)

standardised communication between

controller and host stack

yes

RFCOMM (Radio

Frequency

COMMunications)

cable replacement protocol for a virtual

serial data stream, emulating RS-232

yes

BNEP (Bluetooth

Network Encapsulation

Protocol)

Encapsulate 802.3 (Ethernet) for use with

Bluetooth

yes

AVCTP (Audio/Visual

Control Transport

Protocol)

Transfer remote control buttons over L2CAP

channels

yes

AVDTP (Audio/Visual

Data Transport Protocol)

Foundation for A2DP high quality audio

transfers

yes

OBEX (OBject

EXchange)

Exchanging Objects, similar to IrDA OBEX partly

A2DP (Advanced Audio

Distribution Profile)

High quality audio streaming between

capable devices

yes

HFP (Hands Free Profile) Profile for connecting a headunit and a

mobile phone and controlling the mobile

phone

yes

HSP (Headset Profile) Most commonly used profile for connecting

a headset to a mobile phone

yes

PAN (Personal Area

Networking)

Networking over Bluetooth (e.g. used for

Internet connection sharing of mobile

phones)

yes

PBAP (Phone Book

Access Profile)

Access to the mobile phone’s phonebook

based on OBEX

client

SIM Access Profile (SAP,

SIM, rSAP)

Allows direct access to SIM cards in mobile

phones

prelimi-

nary

DUN (DialUp Networking) Uses AT modem command set for dialing prelimi-

nary

Table 1: Selection of Bluetooth protocols

Technical Brief 20100202 www.MLEcorp.com Page 12

