
Hardware Parameter Access from Application Software

Technical Brief 20110127 from Missing Link Electronics:

Hardware Parameter Access from Application Software

We present a technique for accessing hardware device paramenters and control values

based on the Open Source GNU/Linux standardized concept of the sysfs virtual filesys-

tem. Exemplary code for a motor control device demonstrates how to easily access a

hardware device’s registers from application software and/or user scripts to facilitate hard-

ware integration or system debugging.

Copyright © 2011 Missing Link Electronics. All rights reserved. Missing Link Electronics, the stylized Missing Link Electronics
MLE logo are the service mark and/or trademark of Missing Link Electronics, Inc. All other product or service names and
trademarks are the property of their respective owners.

Technical Brief 20110127 www.MLEcorp.com Page 1

Hardware Parameter Access from Application Software

— Technical Brief 20110127 —

Interfacing between hardware and software plays an important role, for example, in rapid

prototyping of control systems. Application software access to the real world by reading

sensor values or by driving actuators is a basic requirement for embedded systems. By

following defacto standards from the GNU/Linux Open Source world the Missing Link Elec-

tronics “Soft” Hardware Platform can quickly and safely link together the hardware and the

software domains.

Hardware can have many control parameter values or status indicators which are not re-

quired during normal operation but may greatly facilitate debugging or realizing special

applications like test and measurement equipment and data acquisition systems. How-

ever, to mitigate development risks a system’s interfaces for hardware access should not

be affected by this extra debug and diagnostic functionality such that existing application

software can be left unchanged.

Communication between hardware and software is handled using so-called memory mapped

hardware device registers, as shown in FIG. 1.

Speed
0x40

Direction
0x44

0x48

Temperature
0x78

0x7C

/

dev

sys

motor0

motor0
temp

MOTOR

DRIVER

Main

Functionality

Auxiliary

Functionality

Hardware Operating System Application Software
Memory Mapped

I/O Registers

Device Nodes

and SysFS

Figure 1: GNU/Linux Methods for Hardware Access

These hardware device registers are part of the hardware peripheral devices and blend into

the memory map visible by the system’s processor. When software accesses a memory

region assigned to a particular hardware device, it thereby can exchange data with that

particular hardware peripheral device. Under GNU/Linux, device drivers normally operate

in a particular domain – the so-called kernel-space – while all user application software

operates in the restricted domain – the so-called user-space.

Therefore, a “bridge” is needed to allow application software developers to easily and non-

intrusively access certain hardware device registers. In short, a reliable method is needed

for exporting hardware device register’s from the device driver level in the kernel-space to

the user-space (FIG. 2).

This technical brief will demonstrate how to implement such methods for linking hardware

and software. It bases on programming normal file IO which is described in chapter 14 of

the Linux Device Drivers programming guide [LDD3].

Technical Brief 20110127 www.MLEcorp.com Page 2

Hardware Parameter Access from Application Software

The MLE Linux follows Open Source GNU/Linux defacto standards where the kernel is in

charge of providing device drivers, for access to the hardware and to hide hardware de-

tails from application software. Typically, the kernel provides unified methods of access to

hardware peripheral devices mostly via so-called character device nodes or block device

nodes. This way the kernel acts as a Hardware Abstraction Layer and user-space applica-

tion software can be independent of the underlying hardware platform and independent of

the exact hardware devices used.

While hiding hardware details in general is a good thing (and a very important feature of

modern operating systems like GNU/Linux) there are situations where one wants more

insight to the device driver and the hardware device’s internals. This is the case during

hardware / software co-debugging as well as for implementing application specific systems,

used as test and measurement equipment, for example.

Figure 2: GNU/Linux User and Kernel Space

To implement this hardware / software access path, one should not change the standard

interfaces which the kernel provides, because then the concept of a Hardware Abstrac-

tion Layer may brake, possibly resulting in major re-writes of existing application software.

That’s why at MLE we recommend to separate access to hardware parameter values and

status indicators from the main device access methods.

The following will describe – in an exemplary fashion – the concepts for achieving this

separation. As an example, we use the motor device with the corresponding Linux de-

vice driver from FIG. 1. This example’s main functionality is to control the revolutions per

minutes (RPM) of the motor and, therefore, the device driver provides a so-called Linux

character device /dev/motor0 to control RPM. In addition to the RPM control, our exem-

plary motor has a temperature sensor attached to it. While the device driver can read the

current temperature values by accessing the provided memory mapped hardware regis-

ters, the question now is: How should this temperature value be passed to user-space

applications?

Technical Brief 20110127 www.MLEcorp.com Page 3

Hardware Parameter Access from Application Software

Fundamentally, there exist five different ways to implement the extra access path:

1. Map the hardware device’s hardware memory into user-space.

2. Insert an additional Linux character device for the temperature values.

3. Utilize the iotl system call associated with the motor’s existing Linux device.

4. Insert a node into /pro via the virtual filesystem profs.

5. Insert a node into /sys via the virtual filesystem sysfs.

The first option for accessing hardware from user-space is straight forward: Map the IO

memory of the respective hardware portion into user-space and access it like any other

variable from within the application software. While this is a fast and very direct method

of access, it is error prone and lacks any hardware abstraction. On top of this one would

have to access hardware device registers via memory address offsets which is much more

cumbersome and leads to harder to maintain application software code.

The second option, an additional Linux character device, may be a good choice depending

on the type of data one wants to exchange with the device driver and/or the hardware.

However, there is the challenge to identify corresponding device nodes. And, it may take

a huge effort to parse the data, especially if many different bits of information are to be

obtained. This access path is appropriate for large amounts of data with similar context,

purpose and structure, but not for simple hardware parameter access.

The third option, the iotl system call is intended to get and set parameters of a particular

device, for example, small portions of data. As a result the iotl system call is hard to use

from command line or shell scripts and thus not ideal in rapid prototyping.

According to the GNU/Linux coding standard, the fourth option, access via the virtual

filesystem profs should only be used for access to process data (with minor exceptions

for historical reasons). profs is not intended for access to system details and, to stay

compliant with defacto standards, one should never use it to expose device driver details

to user-space.

The last option, access via the virtual filesystem sysfs is the preferred approach in the

Open Source GNU/Linux community. It was invented to reflect the internal structure of a

GNU/Linux system’s devices and their relationship to each other. It was meant to export

attributes for hardware peripheral devices to bridge the different layers: kernel-space and

user-space.

Additionally, sysfs can reflect hierarchical structures like sub-system layers. In short, it

is the perfect concept to expose hardware device parameters to user-space applications,

because it was build for that sole purpose. In many cases, sysfs should be preferred overiotl system calls because it is easier to use in command-line shell scripts and easier to

maintain in application software.

The sysfs virtual filesystem’s directory hierarchy is tied together by so-called kobjet ker-

nel object structures. These kernel objects can have parential relationships between each

other and export so-called attribute file node for access from user-space. These attribute

Technical Brief 20110127 www.MLEcorp.com Page 4

Hardware Parameter Access from Application Software

file nodes can be accessed by standard read and write system calls just like any other file

in the sysfs virtual filesystem. Typically, it is mounted under /sys.

Reading a file node from the sysfs virtual filesystem triggers the execution of a corre-

sponding show-function inside the kernel, while writing to a file node herein executes a

corresponding store-function. Each attribute file node represents a single hardware device

parameter and – according to the defacto standards – shall contain one and only one single

human readable value.

Using exemplary C source code fragments for our motor control hardware device with an

integrated temperature sensor, we will demonstrate how to implement a sysfs file node.

Thereby, our motor temperature can be accessed via the sysfs virtual filesystem. The

following code snippets are part of a Linux kernel module and extend the device driver’s

functionality to provide the sysfs file nodes including access to the device’s hardware reg-

isters.

For simplicity, we will create an attribute file node directly inside the directory /sys (nor-

mally, one would use sub-directories to reflect the hierarchy of the connected hardware

peripherals). We also omit any comments and error checking to keep the example short.

See [mle_ds_addac.c], the sourcecode for our Delta-Sigma analog to digital and digital to

analog converters, for a more complete example.

Each kobjet kernel object for an attribute file node has a ktype associated with it, which

links it to call-back functions to be called when the kernel object is no longer needed, or to

be called when the related sysfs entries are accessed via read or write from applications.

The ktype structure also holds a list of attributes handled by the kernel object and which

are exported via the sysfs virtual filesystem. As a result, a typical sysfs attribute file

node has five components: C code structure as the handle for the data type, and C code

functions for creation and initialization of the attribute file node, to be called as the kernel’s

store-function, to be called as the kernel’s show-function, and to tear down and release the

attribute file node.

s ta t ic struct kobj_type motor_kobj_ktype = {
. re lease = motor_kobj_re lease ,
. sysfs_ops = &(struct sysfs_ops) {

. show = motor_kobj_show ,

. s to re = motor_kobj_store
} ,
. d e f a u l t _ a t t r s = (struct a t t r i b u t e * []) {

&(struct a t t r i b u t e) {
. name = " temperature " ,
. owner = THIS_MODULE,
. mode = S_IRUGO|S_IWUGO

} ,
NULL

}
} ;

After allocating memory for the kernel object and initializing it to zero, a call to the C code

function kobjet_init will associate that kernel object with its’ ktype. A call to the C code

Technical Brief 20110127 www.MLEcorp.com Page 5

Hardware Parameter Access from Application Software

function kobjet_add will create a sub-directory within the /sys directory with the given

name and will place file nodes for the kernel object’s attributes within that sub-directory:

struct kob j ec t * kob j = (struct kob j ec t *) kza l l oc (sizeof (struct kob j ec t) , GFP_KERNEL) ;
k o b j e c t _ i n i t (& kobj , &motor_kobj_ktype) ;
kobject_add(& kobj , NULL, " motor0 ") ;

As a result, there will be an entry /sys/motor0 in the sysfs virtual filesystem.

The show- and store-functions are called when a read, respectively a write, to the attribute’s

file node occurs. When the attribute structure is passed to this functions, one can use the

attribute’s name as a convenient handle. Because this example has only one single at-

tribute, “temperature”, we do not check the name here. We get the value to write as a C

code character string stored in buffer, convert it to an integer number and write this integer

number into the predefined hardware device register. For a realworld application this reg-

ister is mapped to the kernel’s virtual address space. We assume this has already by done

and temperature_hw_register is the registers virtual address. See [mle_ds_addac.c] for

an example how to do this.

s ta t ic ss i ze_ t motor_kobj_store (struct kob j ec t * kobj ,
struct a t t r i b u t e * a t t r ,
char * bu f fe r ,
s i ze_ t s ize)

{
iowr i te32be (s i m p l e _ s t r t o u l (bu f fe r , NULL, 10) , temperature_hw_regis ter) ;
return s ize ;

}

Reading a hardware device register via sysfs is nearly the same, except the dataflow goes

in the opposite direction:

s ta t ic ss i ze_ t motor_kobj_show (struct kob j ec t * kobj ,
struct a t t r i b u t e * a t t r ,
char * b u f f e r)

{
s n p r i n t f (bu f fe r , PAGE_SIZE , "%d C\ n " , ioread32be (temperature_hw_reg iste r)) ;
return s t r l e n (b u f f e r)+1 ;

}

When the kernel object is no longer used, a call to the C code function kobjet_del
does the opposite of the C code function kobjet_add: It removes all related entries from

the sub-directory in the sysfs virtual filesystem. Afterwards, calling the C code functionkobjet_put will decrease the kernel’s usage counter of the kernel object, eventually trig-

gering a call of the release function, if the kernel object is no longer used by any other

kernel code. This is how a release function can be implemented:

Technical Brief 20110127 www.MLEcorp.com Page 6

Hardware Parameter Access from Application Software

s ta t ic void motor_kobj_re lease (struct kob j ec t * kob j)
{

k f ree (kob j) ;
}

kob j ec t_de l (& kob j) ;
kob jec t_put (& kob j) ;

After loading the sysfs kernel module there will be a sub-directory /sys/motor0 containing

a file node named temperature.

We can test the proper functioning by using the UNIX at command to read the file node:$ at /sys/motor0/temperature43 C
The GNU/Linux sysfs virtual filesystem concept provides an easy-to-use interface for both

kernel-space and user-space programs to exchange small amounts of data in the form of

attributes, hardware device parameters or status information.

One should be aware of the fact, that sysfs is not real-time capable and any sequence of

events may not be exactly synchronized to the data transfered on the device driver’s main

access path. It is, however, well suited to obtain information from peripheral hardware and

the device driver and does not interfere with the standard device access methods or device

operation.

Linking hardware and software via the sysfs virtual filesystem is therefore ideal for debug-

ging purposes or to implement special application specific devices without breaking the

Hardware Abstraction Layer or compatibility with standard software.

References

[LDD3] Jonathan Corbet, Alessandro Rubini, Greg Kroah-Hartman:

Linux Device Drivers, Third Edition,

O’Reilly Media, February 2005.http://lwn.net/Kernel/LDD3
[mle_ds_addac.c] MLE driver for Delta-Sigma ADC and DAC,http://www.mleorp.om/files/soures/mle_ds_adda.

Technical Brief 20110127 www.MLEcorp.com Page 7

http://lwn.net/Kernel/LDD3
http://www.mlecorp.com/files/sources/mle_ds_addac.c

