
MLE TB 20210529

Latency Analysis for NVMe/TSN
Version 1.0

2021-05-29 © Missing Link Electronics 0



MLE TB 20210529

Table of Content

Executive Summary 2

1. Concept Behind NVMe/TSN and PCIe Range Extension 4

2. Fundamentals of NVMe 6

2.1. Anatomy of an NVMe Read Request 9

2.2. Anatomy of an NVMe Write Request 11

3. Experimental Test Setup 13

4. Latency of NVMe/TSN 16

4.1. Latency for Config TLPs (T_tunnel) 16

4.1.1. Latency for Direct Attached NVMe 16

4.1.2. Latency for NVMe Tunneled over TCP/IP 18

4.1.3. Latency of NVMe/TSN 19

4.2. NVMe Application Level Latency - SSD Read 20

4.2.1. Latency for Direct Attached SSD 20

4.2.2. Latency for NVMe Tunneled over TCP/IP 21

4.2.3. Latency for NVMe/TSN 21

4.3. NVMe Application Level Latency - SSD Write 22

4.3.1. Latency for Direct Attached SSD 22

4.3.2. Latency for NVMe Tunneled over TCP/IP 22

4.3.3. Latency for NVMe/TSN 23

4.4. Results 23

5. Conclusion & Backgrounder 24

Authors and Contact Information 25

2021-05-29 © Missing Link Electronics 1



MLE TB 20210529

Executive Summary

NVMe/TSN is a range extension for NVM Express (NVMe) done by tunneling PCI Express

(PCIe) over TCP/IP over Time Sensitive Networking (TSN). This MLE Technical Brief gives

a quantitative analysis of the latency when tunneling NVMe over TCP/IP over TSN.

NVMe has proven many advantages for Solid-State Drive (SSD) storage compared to

legacy standards such as Serial ATA (SATA) or Serial Attached SCSI (SAS): Most

importantly, it scales in terms of bandwidth with newer PCIe Standards while reducing

the protocol overhead and processing latencies.

TSN is a collection of IEEE Standards providing real-time behavior in systems utilizing

Ethernet. This collection combines Time Synchronization, Traffic Shaping and Traffic

Scheduling, reliability and resource management:

2021-05-29 © Missing Link Electronics 2



MLE TB 20210529

TSN can be combined with TCP/IP to provide so-called Deterministic Networking

(DetNet) which is, for example, described in MLE Technical Brief 20201203

“Deterministic Networking with TCP-TSN-Cores for 10/25/50/100 Gigabit Ethernet”

[https://www.missinglinkelectronics.com/devzone/index.php/deterministic-networking-

with-tcp-tsn-cores-for-10-25-50-100-gigabit-ethernet-2 ].

NVMe/TSN addresses the need for disaggregated and centralized storage in certain

embedded systems. For example distributed industrial systems, test & measurement

systems, as well as those next generation automotive / in-vehicle networks, nowadays

called “Zone-Based Architectures”. These Zone-Based Architectures aim at reducing the

costs of wire harnesses in modern vehicles while providing more flexibility for changes

during a vehicle’s product life cycle (mostly driven by Advanced Driver Assist Systems -

ADAS). Automotive Ethernet has a great potential to become such a “backbone” for

connecting those so-called Zone Computers via Zonal Gateways:

This Technical Brief starts by explaining the concept of how to tunnel PCIe using MLE’s

patented Heterogeneous Packet-Based Transport technology and briefly explaining

NVMe from a higher-level protocol’s perspective. We then present an experimental

setup utilizing a PCIe Protocol Analyzer with time-stamping for analyzing the added

latency when tunneling NVMe, including a comparison of tunneling over plain Ethernet

vs tunneling over TSN over Ethernet.

2021-05-29 © Missing Link Electronics 3

https://www.missinglinkelectronics.com/devzone/index.php/deterministic-networking-with-tcp-tsn-cores-for-10-25-50-100-gigabit-ethernet-2
https://www.missinglinkelectronics.com/devzone/index.php/deterministic-networking-with-tcp-tsn-cores-for-10-25-50-100-gigabit-ethernet-2


MLE TB 20210529

1. Concept Behind NVMe/TSN and PCIe Range Extension

The fundamental concept behind NVMe/TSN is PCIe Range Extension by implementing a

“distributed” PCIe Switch. This PCIe Switch is in accordance to PCI-SIG PCI Express Base

Specification 3.0 and implements one PCIe Up-Stream Switch Port connected via a

reliable transport mechanism to multiple PCIe Down-Stream Switch Ports. Like all other

PCIe Switches our PCIe Switch operates at so-called PCIe Transaction Layer where the

PCIe data is transported via so-called Transaction-Layer Packets (TLP).

As a reliable transport mechanism we chose TCP/IP because it is widely used and widely

understood, and can be transported over many different physical Ethernet standards

for versatility. For low deterministic latency this tunnel is implemented as a digital circuit

which builds on top of MLE’s Network Protocol Accelerator Platform (NPAP), a TCP/IP

Full Accelerator from Fraunhofer HHI and which encapsulates/decapsulates the PCIe

TLP into TCP/IP packets. The following figure shows an exemplary block diagram of that

PCIe Range Extension: A first FPGA implements the PCIe Up-Stream Switch Port which

connects to the PCIe Root (which again connects to a Host CPU), a second FPGA

implements a PCIe Down-Stream Switch Port which connects to a PCIe Device (a.k.a.

PCIe Endpoint). Obviously, this can also be within a deeper PCIe hierarchy built from

multiple PCIe Switches. In this example, PCIe Up-Stream Switch Port and PCIe

Down-Stream Switch Port are connected via 10G Ethernet to form the distributed PCIe

Switch.

Color coding visualizes the encapsulation and decapsulation of the PCIe TLP within the

TCP/IP packets, within the Ethernet frames:

2021-05-29 © Missing Link Electronics 4



MLE TB 20210529

Because NVMe is a protocol that operates on top of the PCIe protocol, the PCIe Range

Extension can also be used to tunnel NVMe. And, because the implementation follows

the OSI layered network architecture, the Ethernet Media Access Controller can be TSN,

or not. And, it can be over any reasonable physical (Ethernet) link.

2021-05-29 © Missing Link Electronics 5



MLE TB 20210529

2021-05-29 © Missing Link Electronics 6



MLE TB 20210529

2. Fundamentals of NVMe

Because of the request/response scheme in NVMe, application-level latency is defined

by multiple round-trips between the host and the SSD, according to the TLP sequence of

the NVMe protocol. Therefore, a short backgrounder on NVMe.

It is important to know that the NVMe command interfaces are built around queues that

reside in host memory and are shared between host and device (let’s ignore special

optimizations with queues in the device). A doorbell mechanism synchronizes the

device with the host and MSI-X interrupts synchronize the host with the device. For CPU

processing efficiency, the number of interrupts are kept as low as possible by interrupt

aggregation (coalescing). This technique is well known from network device interfaces,

which also deal with a large number of transfers per second.

According to the NVMe specification the basic command communication pattern looks

like this:

To better align this with the communication pattern, we show a sequence diagram with
the respective TLP flow shown on the PCIe level. Further down in this document we will

2021-05-29 © Missing Link Electronics 7



MLE TB 20210529

observe this communication pattern using a PCIe protocol analyzer and actual
hardware/software.

Only communication related to data transfers is shown in this sequence diagram,

additional device management commands, e.g. power state management, etc, are not

taken into account. On the left-hand side, the command interface and its

communication pattern is shown. On the right-hand side, read transfers are shown,

meaning data transfers from device to the host (read from disk), are outlined. In the

middle write transfers, meaning data transfers from host to device (write to disk), are

shown. Please note that the commands are executed by the device with the help of its

DMA controller(s) which leads to reverse access patterns in comparison to the

command, e.g. a read command from the host to the device results in the device's DMA

controller writing to the host memory.

The numbering scheme between both figures is the same. In addition to the circled

numbers marking command associated action, squared numbers are introduced

marking data transfer (command execution) associated actions.

2021-05-29 © Missing Link Electronics 8



MLE TB 20210529

1. At first, commands may be en-queued at any time (1). The doorbell writes

signaling that any number of new commands have been en-queued (2).

2. Afterwards the device can choose to fetch any number of commands from the

queue (3).

3. Then the commands are executed (4).

4. When the commands are finished the corresponding completion is en-queued in

the completion queue (5).

5. To communicate to the host that the completion queue has been updated, the

device issues an interrupt (6).

To lower the interrupt rate, which otherwise may easily overload the Host CPUs

processing capabilities, interrupts typically are aggregated (so-called Interrupt

Coalescing). The interrupts are typically signaled via PCIe Message Signaled

Interrupts (MSI / MSI-X), which are in-band interrupts signaled with regular

posted write request TLPs.

6. On reception of the interrupt, the host processes the completion queue entries

(7).

7. When processing the completion queue entries has finished the host signals this

via another doorbell write (8), freeing up the respective entries in the completion

queue.

Within the data transfer phase (4) the device is in charge to schedule memory accesses

in a performance optimized manner.

As previously mentioned a host write transfer to the device actually results in a PCIe

device DMA read access [1] fetching the data from host memory. Due to requirements

by the PCIe specification, a read request may never cross a 4 KiB boundary. So, the

maximum memory portion which could be read during one read access is 4 KiB. On the

other hand the TLP payload size is usually much lower, e.g. typically 128 Bytes or 256

Bytes, seldom 512 Bytes, theoretically up to 4 KiB. The actual payload size of the end to

end link is defined by system and device parameters and is discovered during device

enumeration phase. Additionally the maximum read request size is the maximum

memory size allowed to be requested by one TLP. This parameter is set per device and

Linux typically sets it to 512 Bytes. Drivers may override the default setting for specific

devices to optimize for read accesses. First, this means that one read request TLP most

2021-05-29 © Missing Link Electronics 9



MLE TB 20210529

likely results in some number of completion TLPs carrying the data, as shown in [1].

Second, the setting of the maximum read request size is typically not tuned for

distributed systems which tunnel NVMe over TSN.

A read transfer from device to host is actually a write access [2] executed by the device

DMA controller. PCIe memory writes are posted, which means they are neither nacked

nor acked on the transport layer, because the DLLP takes care about data integrity. This

way the device may just issue writes until a command is completed.

The following explains how NVMe behaves for SSD Read and SSD Write operations. For

visualization purposes we have added screenshots of a PCIe Protocol Analyzer which

captured those NVMe / PCIe TLPs.

2.1. Anatomy of an NVMe Read Request

Below we show some practical examples of NVMe communication using a Samsung 970

Pro SSD as the DUT to read and write a single 4 KiB block. The PCIe protocol analyzer

with matching software was used to observe PCIe communications and

decode/summarize it on different levels.

The following figure shows a 4 KiB read (device to host data transfer) in NVMe protocol

view with low level TLPs expanded. NVMe Transaction 609 is executed as Link

Transaction 5045, which is the NVMe submission queue tail doorbell update (2) in the

form of a Memory Write TLP from host to device.

The device then fetches the new submission queue entry in a 64 Byte read (3). This is

seen as NVMe Transaction 610 in the form of Link Transactions 5046 and 5047. Next,

the device writes the requested data from flash to host memory (4) [2] in NVMe

Transaction 611, which is executed as sixteen 256 Byte payload (equals the maximum

payload setting) write TLPs (Link Transaction 5048 through 5063).

2021-05-29 © Missing Link Electronics 10



MLE TB 20210529

NVMe Transaction 612 updates the completion queue in host memory (5) by writing the

16 Byte completion queue entry via Link Transaction 5064. This is followed by an MSI-X

interrupt (6) in NVMe Transaction 613, notifying the host of the new completion queue

entry.

To conclude the IO command the host informs the device via NVMe Transaction 614

that it has consumed the completion queue entry by updating the completion queue

head doorbell (8).

2021-05-29 © Missing Link Electronics 11



MLE TB 20210529

2.2. Anatomy of an NVMe Write Request

Writes to the device, as seen in the figure below, work in exactly the same way, except

that of course the actual data transfer is performed by the device reading from host

memory and writing data to flash.

The device’s DMA engine reads (4) [1] can be seen in NVMe Transaction 618. It is

interesting to see that the DMA engine requests only 256 Bytes per read request TLP,

while a 512 Bytes maximum read request size is configured, and that the host responds

with two 128 Byte completions per read request even though a maximum payload of

256 Bytes would have been allowed. This is implementation specific behavior and a

design decision by the implementers (in this case Samsung and AMD).

Note that the high level NVMe Transaction view does not necessarily reflect the actual

order of TLPs, but arranges them into a logical NVMe Transaction view. Below you can

see the Link Transaction view providing more insight into the actual ordering and

showing how multiple read requests are issued (with incrementing tags) in rapid

2021-05-29 © Missing Link Electronics 12



MLE TB 20210529

sequence before, much later, the first completions return to the device. This is an

important latency mitigation strategy, as discussed below.

2021-05-29 © Missing Link Electronics 13



MLE TB 20210529

3. Experimental Test Setup

The following describes the experimental test setup used for analyzing the latency of

NVMe/TSN. Tests were done for PCIe Gen2 with 5GT/s and when running TSN over 1

Gigabit Ethernet, and, hence, reflect somewhat a worst-case scenario (obviously, when

using 10 GigE or 25 GigE latencies will be shorter which is better).

The LeCroy Summit T28 PCIe Protocol Analyzer was used for taking PCIe latency (and

protocol) measurements. Restricted by the LeCroy Summit T28 which (only) supports

PCIe Gen2 with 5 GT/s data rates, all measurements were taken for PCIe Gen2. Hence,

we can assume that latency numbers, in reality for PCIe Gen3 / Gen4, will be slightly

better than measured. To compute the latency we used the time stamping capabilities

of the LeCroy Summit T28, for which LeCroy reports a precision of +/- 8 ns.

Our experimental setup uses a standard mini-ITX PC with an AMD Ryzen 3200G CPU

running Debian 9 64bit Linux and a Samsung 970 Pro 512 GB SSD. The FPGAs used for

implementing the PCIe Upstream Switch Port and the PCIe Down-Stream Switch Port

are Xilinx ZU19EG Zynq UltraScale+ MPSoC instantiating Xilinx “PG047 - 1G/2.5G

Ethernet PCS/PMA or SGMII (v16.2)” and the Xilinx “PG213 - UltraScale+ Devices

Integrated Block for PCI Express v1.3” for PCIe connectivity.

For comparison we analyze and compare the latency of the following three different

topologies:

● Direct attached NVMe - this measurement is the latency from the Host CPU to

the NVMe SSD (or, to be precise, from the PCIe protocol analyzer’s test access

point to the NVMe SSD DUT and back) and serves as a baseline which can be

subtracted from the other measurements taken. The following block diagram

shows this topology:

2021-05-29 © Missing Link Electronics 14



MLE TB 20210529

● NVMe tunneled over TCP/IP - this measurement is the latency from the Host CPU

via the FPGA-based PCIe Upstream Switch Port via TCP/IP over 1 Gigabit Ethernet

(without TSN) via the FPGA-based PCIe Down-Stream Switch Port to the NVMe

SSD.

● NVMe/TSN - this measurement is the latency from the Host CPU via the

FPGA-based PCIe Upstream Switch Port via TCP/IP and TSN over 1 Gigabit

Ethernet, via the FPGA-based PCIe Down-Stream Switch Port to the NVMe SSD.

By comparing this measurement against the second measurement we can

identify the impact of the TSN IP Core on overall latency.

● Given by the concept of NVMe/TSN latency can be attributed to the different

segments of connectivity. Thus, we can define the latency T_tunnel as the latency

introduced by

● T_pcie = Transport delays inherent to PCIe

2021-05-29 © Missing Link Electronics 15



MLE TB 20210529

● T_tlp2tcp = Transport delays caused by tunneling (on-chip encapsulation and

decapsulation and buffering)

● T_ethernet = Transport delays inherent to Ethernet

For T_tunnel we can ignore

● T_sw = userspace software and operating system processing times within the

Host CPU as well as host memory access delays

● T_ssd = Storage data processing times within the NVMe SSD

Hence, T_tunnel = T_sw + 2 * T_pcie + 2 * T_tlp2tcp + T_ethernet.

Please note that T_tunnel is not the round-trip time but the “one-way” time from PCIe

through encapsulation, network transport and decapsulation.

2021-05-29 © Missing Link Electronics 16



MLE TB 20210529

4. Latency of NVMe/TSN

To analyze the latency for NVMe/TSN we investigate two cases: The first case is more of

a theoretical nature as it looks at the latency added to a typical PCIe TLP when tunneling

over TCP/IP with and without TSN Ethernet. The second case is more of practical

relevance as it shows the latency effects of tunneling for SSD read and write - which

comprises many TLPs going back and forth between the Host CPU and the SSD. In either

case we perform tests on all the three topologies described above.

4.1. Latency for Config TLPs (T_tunnel)

Our first experiment performs Linux PCIe Configuration Space access. Because these

TLPs do not involve the SSDs flash translation layer, this is a good indication for

measuring the tunneling latency.

We perform this first experiment by capturing PCIe TLPs with the PCIe protocol analyzer

and using the associated PCIe protocol analyzer software to measure latency

differences in different setups. The precision of the measurement is specified as +/- 8 ns

(nanoseconds) by the protocol analyzer manufacturer. All measurements are taken at

the root port link of the Host CPU, i.e. between CPU and SSD or Host CPU and PCIe

Upstream Switch Port respectively.

4.1.1. Latency for Direct Attached NVMe

This measurement is the latency from the Host CPU to the SSD (or, to be precise, from

the PCIe protocol analyzer’s test access point to the SSD and back) and serves as a

baseline which can be subtracted from the other measurements taken.

Configuration TLPs are responded to in a quite deterministic way by the SSD and thus

are useful for comparing latencies in different PCIe topologies. All PCIe links and

2021-05-29 © Missing Link Electronics 17



MLE TB 20210529

components are in an idle condition when performing this measurement so other

transfers don’t influence the results.

We take the first five configuration read requests to get a small sample size average

latency. The timestamps shown in the PCIe analyzer trace software reference the start

of each TLP and the time delta specifies the distance from the end of TLP/DLLP to the

start of the next TLP/DLLP. We will calculate the time from start of each configuration

read request to the start of the corresponding completion with data. The time for the

final ACK is outside of the tunneled path and not relevant for this discussion.

The above screenshot from the PCIe Protocol Analyzer shows the mentioned first
configuration read requests and matching competitions with data for the directly
connected SSD. By subtracting the two timestamps it can be seen that the latency
measured from start of request to start of completion (as discussed above) is 264 ns,
280 ns, 284 ns, 280 ns, and 292 ns.

2021-05-29 © Missing Link Electronics 18



MLE TB 20210529

4.1.2. Latency for NVMe Tunneled over TCP/IP

This measurement is the latency from the Host CPU via the FPGA-based PCIe Upstream

Switch Port via TCP/IP over 1 Gigabit Ethernet (without TSN) via the FPGA-based PCIe

Down-Stream Switch Port to the NVMe SSD.

Below you find the screenshot of the PCIe Protocol Analyzer capturing this traffic:

Now looking at the SSD connected to the TCP tunneled PCIe switch without TSN, the

latencies increase to 6060 ns, 6030 ns, 5990 ns, 6040 ns, and 5990 ns, with an average

of 6020 ns. While this transport back and forth is not symmetrical, a sufficiently precise

estimate for T_tunnel is half of this round trip time. The time taken by the SSD to

process the request is from the first measurement (Labcar 6.pre3), which results in

● T_tunnel = (6020 ns - 280 ns) / 2 = 2870 ns

2021-05-29 © Missing Link Electronics 19



MLE TB 20210529

4.1.3. Latency of NVMe/TSN

This measurement is the latency from the Host CPU via the FPGA-based PCIe Upstream

Switch Port via TCP/IP and TSN over 1 Gigabit Ethernet, via the FPGA-based PCIe

Down-Stream Switch Port to the NVMe SSD. By comparing this measurement against

the second measurement we can identify the impact of TSN.

Below you find the screenshot of the PCIe Protocol Analyzer capturing this traffic:

Latency slightly increases to 7080 ns, 7088 ns, 7088 ns, 7092 ns and 7108 ns, which
averages to 7091 ns.

Again, while this transport back and forth is not symmetrical, a sufficiently precise

estimate for T_tunnel is half of this round trip time. The time taken by the SSD to process

the request is from the first measurement which results in

2021-05-29 © Missing Link Electronics 20



MLE TB 20210529

● T_tunnel = (7091 ns - 280 ns) / 2 = 3405 ns

We contribute this additional latency when tunneling via TSN to additional buffer (FIFO)

stages within the Fraunhofer IPMS TSN IP Core.

4.2. NVMe Application Level Latency - SSD Read

To measure application-level latencies, the Linux “dd” program is used to read single 4

KiB blocks in an otherwise idle system. The test setup is identical to the previous PCIe

Configuration Access tests. Please note that a large portion of the execution time is

associated with SSD internal flash access and processing and thus may vary largely

regardless of the connection latency. This consumer grade SSD does not make latency

guarantees.

4.2.1. Latency for Direct Attached SSD

The following screenshot shows the total execution time for a 4 KiB read from the SSD

device directly attached to the Host CPU. The time it takes for the completion queue

head doorbell write can not be measured, but since writes are posted the host assumes

the IO command is complete as soon as this write TLP is issued. The difference from the

start of the submission queue tail doorbell update to the DLLP ACK of the completion

queue head doorbell update, and thus the IO command execution time, is 99.92 us.

4.2.2. Latency for NVMe Tunneled over TCP/IP

The following screenshot shows the latency for the NVMe tunneled over TCP/IP (without

TSN). The measured latency for the 4 KiB read is 149.41 us.

2021-05-29 © Missing Link Electronics 21



MLE TB 20210529

4.2.3. Latency for NVMe/TSN

The following screenshot shows the latency for NVMe/TSN. Adding TSN to the tunneled

PCIe switch the latency increases to 186.90 us:

2021-05-29 © Missing Link Electronics 22



MLE TB 20210529

4.3. NVMe Application Level Latency - SSD Write

Next we look at write latencies for a 4 KiB write from host to device. Latencies inside the

SSD are generally lower because the SSD does not need to access flash and can store

this write in its cache. The PCIe communication is expected to have slightly higher

latency because the necessary DMA read requests are non-posted.

4.3.1. Latency for Direct Attached SSD

The following screenshot is for the directly-attached SSD. The latency is 51.71 us.

4.3.2. Latency for NVMe Tunneled over TCP/IP

The following screenshot is for the NVMe tunneled over TCP/IP (without TSN). The

latency is 142.28 us.

2021-05-29 © Missing Link Electronics 23



MLE TB 20210529

4.3.3. Latency for NVMe/TSN

The following screenshot is for the NVMe/TSN. The latency is 149.74 us.

4.4. Implications of Application-Level Latency

The following table reviews the results of the latency comparison between Config TLPs

for a) the direct attached SSD, b) a networked SSD with NVMe tunneled over TCP/IP, and

c) a networked SSD with NVMe tunneled over TCP/IP and over TSN:

Measurement NVMe with Direct
Attached SSD

SSD with NVMe
Tunneled over TCP/IP

SSD with NVMe/TSN

1 280 ns 6060 ns 7080 ns

2 284 ns 6030 ns 7088 ns

3 280 ns 5990 ns 7092 ns

4 290 ns 6040 ns 7108 ns

This shows that the extra round trip latency introduced by TSN is approximately 1

microsecond. We believe that this is very acceptable given the many benefits of TSN,

such as traffic shaping and the real-time system capabilities for a distributed system.

For the application-level NVMe read and write test of 4 KiB of data the increase in

latency is much lower than for a single TLP, as the NVMe SSD can exploit parallelism in

TLP transfers.

2021-05-29 © Missing Link Electronics 24



MLE TB 20210529

Measurement NVMe with Direct
Attached SSD

SSD with NVMe
Tunneled over TCP/IP

SSD with NVMe/TSN

4 KiB NVMe Read 100 us 149 us 187 us

4 KiB NVMe Write 52 us 142 us 150 us

Also, please keep in mind that due to the queuing nature of NVMe multiple Read

Requests and/or multiple Write Requests typically overlap in time. That means that at

application-level the extra latency introduced by TSN will be much less visible for typical

read and write loads.

2021-05-29 © Missing Link Electronics 25



MLE TB 20210529

5. Conclusion & Backgrounder

Our experimental analysis shows that NVMe/TSN comes with reasonable additional TLP

latency, 3.4 microseconds, which is good enough for many real-time systems, including

Automotive Zone-Based Architectures.

It demonstrates that NPAP, the TCP/IP Full Accelerator technology from Fraunhofer HHI

is very low latency (something you would expect from a technology once designed and

optimized for low-latency financial trading).

And, a comparison between tunneling without and with TSN also shows that extra

latency is around 0.5 microseconds, which seems well worth given the many advantages

of TSN.

For further information regarding PCIe Range Extension over TCP/IP over TSN over

1/10/25/50/100G Ethernet please refer to our public technology presentations including:

● Jim Peek, Dir. of Technology MLE: “PCIe Range Extension via Robust, Long Reach

Protocol Tunnels”, PCI-SIG Developers Conference 2018

https://www.missinglinkelectronics.com/files/papers/04_10_PCIe_Range_Extensio

n_via_Robust_Long_Reach_Protocol_Tunnels_UL.pdf

● Endric Schubert, CTO MLE: “Sensor Fusion and Data-in-Motion Processing for

Autonomous Vehicles”, PCI-SIG Developers Conference

https://www.missinglinkelectronics.com/files/papers/04_04_Sensor-Fusion-and-D

ata-in-Motion-Processing-for-Autonomous-Vehicle.pdf

● Endric Schubert, CTO MLE: “PCIe-over-TCP-over-TSN-over10/25GigE”, 4th

Workshop Programmable Processing for the Autonomous / Connected Vehicle

2020

https://www.missinglinkelectronics.com/files/papers/MLE-FPGA4ADAS-20200924

.pdf

● Endric Schubert, CTO MLE: “Zone-Based Automotive Backbones Tunneling

PCIe®”, PCI-SIG Virtual Developers Conference 2021

https://www.missinglinkelectronics.com/files/papers/Track3_Session9_Zone_Bas

ed_Automotive_Backbones_Tunneling_PCIe_EndricSchubert_Frozen.pdf

2021-05-29 © Missing Link Electronics 26

https://www.missinglinkelectronics.com/files/papers/04_10_PCIe_Range_Extension_via_Robust_Long_Reach_Protocol_Tunnels_UL.pdf
https://www.missinglinkelectronics.com/files/papers/04_10_PCIe_Range_Extension_via_Robust_Long_Reach_Protocol_Tunnels_UL.pdf
https://www.missinglinkelectronics.com/files/papers/04_04_Sensor-Fusion-and-Data-in-Motion-Processing-for-Autonomous-Vehicle.pdf
https://www.missinglinkelectronics.com/files/papers/04_04_Sensor-Fusion-and-Data-in-Motion-Processing-for-Autonomous-Vehicle.pdf
https://www.missinglinkelectronics.com/files/papers/MLE-FPGA4ADAS-20200924.pdf
https://www.missinglinkelectronics.com/files/papers/MLE-FPGA4ADAS-20200924.pdf
https://www.missinglinkelectronics.com/files/papers/Track3_Session9_Zone_Based_Automotive_Backbones_Tunneling_PCIe_EndricSchubert_Frozen.pdf
https://www.missinglinkelectronics.com/files/papers/Track3_Session9_Zone_Based_Automotive_Backbones_Tunneling_PCIe_EndricSchubert_Frozen.pdf


MLE TB 20210529

Authors and Contact Information

David Epping, Sr. Engineer, Missing Link Electronics GmbH

Ulrich Langenbach, Dir. Engineering, Missing Link Electronics GmbH

Endric Schubert, PhD, CTO, Missing Link Electronics, Inc.

Missing Link Electronics, Inc.

2880 Zanker Road, Suite 203

San Jose, CA 95134, USA

+1-408-475-1490

Missing Link Electronics GmbH

Industriestrasse 10

89231 Neu-Ulm

Germany

www.missinglinkelectronics.com

MLE (Missing Link Electronics) is offering technologies and solutions for Domain-Specific

Architectures, which focus on heterogeneous computing using FPGAs. MLE is

headquartered in Silicon Valley with offices in Neu-Ulm, Germany.

NPAP is the Network Protocol Accelerator Platform, an IP Core for FPGA/ASIC from

Fraunhofer Heinrich-Hertz Institute (HHI). Fraunhofer HHI focuses on 10 to 100 Gbit

transmission in the field of high-performance telecom components and on mobile

broadband systems. Fraunhofer HHI is located in Berlin, Germany. More information

can be found at http://MLEcorp.com/NPAP

TSN is technology from Fraunhofer IPMS. More information can be found at

https://www.ipms.fraunhofer.de/en/Components-and-Systems/Components-and-Syste

ms-Data-Communication/ip-cores/IP-Core-Modules/time-sensitive-networking.html

2021-05-29 © Missing Link Electronics 27

http://www.missinglinkelectronics.com
http://mlecorp.com/NPAP
https://www.ipms.fraunhofer.de/en/Components-and-Systems/Components-and-Systems-Data-Communication/ip-cores/IP-Core-Modules/time-sensitive-networking.html
https://www.ipms.fraunhofer.de/en/Components-and-Systems/Components-and-Systems-Data-Communication/ip-cores/IP-Core-Modules/time-sensitive-networking.html

