NVMe Streamer for High-Speed FPGA Data Acquisition & Recording

NVMe Streamer for
High-Speed FPGA Data
Acquisition & Recording

Abstract

This is about how to best record data that is received by an FPGA, for example from
high-speed data acquisition, and that needs to be stored into an NVMe SSD
(Non-Volatile Memory Express Solid-State Drive), after FPGA-based Data-in-Motion
processing; or the opposite direction when data streams out of an SSD into an FPGA for

Data-in-Motion processing.

At MLE we have been using PCle and NVMe for FPGA-based systems for a while, mostly
to implement so-called Domain-Specific Architectures for high-performance systems
(embedded, or not). In this document we will show architecture choices for CPU-less
NVMe SSD reading/writing, for example for streaming applications where
data-in-motion gets processed by FPGA fabric and then needs to be recorded. Example
applications are active / passive MIMO Radar, 10/25/50/100G networking,
hyper-converged storage servers, Automotive Advanced Driver Assist Systems (ADAS),

Autonomous Vehicle sensor recording, etc. We refer to this as “NVMe Streamer”.
1. Motivation and Outline

Modern FPGA fabric not only allows Data-in-Motion processing at Terabits-per-second
speeds but also has high-speed serial 10s to implement PCl Express (PCle) Standards 3.0
or 4.0, or newer. Non-Volatile Memory Express (NVMe) is a fairly recent storage protocol
that sits on top of PCle and reduces the software processing burden compared to legacy
AHCI protocol used for SATA. A wide range of different SSD form factors are available

today, for example NGFF m.2 or U.2 or new Enterprise and Datacenter SSD Form Factor

2019-12-16 © MLE MLE TB-20191216-03 1

mle

NVMe Streamer for High-Speed FPGA Data Acquisition & Recording

EDSFF E1.S or E1.L. The combination of both, FPGAs and NVMe SSD, allows to

implement high-speed data acquisition systems, a.k.a. data recorders or data loggers.

Fig. 1 shows an FPGA-based architecture where ingress data is to be recorded using an
NVMe SSD and where this NVMe SSD is connected to the Programmable Logic (PL) using
High-Speed Serial 10 for PCle. Basically, incoming data enters the PL on the left, suitable
for data-in-motion processing of that data inside the FPGA, before this data gets written
into the NVMe SSD.

The commonly used dataflow is also shown in Fig. 1. The NVMe protocol is handled in
software by an Operating System - typically Linux - which runs on the Processing System
(PS) a.k.a. the CPU. The NVMe and PCle software routines use Direct Memory Access
(DMA) to write the data from Main Memory into the NVMe SSD and, therefore, there is a

previous DMA required to transfer the data from the PL into Main Memory.

o 75
. e A :':,:: i i o) f d

.
Prochsmg Syslem:(PS) Processing System (PS)

Data Data PCle

_b___-.l (___

1
ngrpmmable Logi¢ (PL)

ass eNAN
ass aWAN

Fig. 1: Data flows through Main Memory Fig. 2: Dataflow for NVMe Streamer

Obviously, in Fig. 1 the data takes a “detour” and this adds traffic to the memory bus of

the PS which in a typical system likely becomes the system'’s performance bottleneck.

The objective of our NVMe Streamer is to free up the Processing System, regardless of
whether this is an embedded CPU like the ARM A53 in the Xilinx Zynq Ultrascale+
MPSoC, or a companion CPU attached to Programmable Logic. This is shown in Fig. 2:
The dataflow can stay entirely within the Programmable Logic and, optionally, be
buffered using PL-attached RAM. Such a buffer may be needed because most SSDs,
while supporting sustained writing at high bandwidth over extended periods of time,

may take short “pauses” in the range of milli-seconds. Even if those pauses happen

2019-12-16 © MLE MLE TB-20191216-03 2

mle

NVMe Streamer for High-Speed FPGA Data Acquisition & Recording

rarely, this may become a problem if the data source does not support backpressure;
without any buffering data may get lost. As we will discuss below, the size of such a
buffer can be between 512 kB - which fits on-chip RAM (URAM) - and up to Gigabytes, if

needed.

Over the following pages we will explain the basic functioning of NVMe, as it is
necessary to understand how our NVMe Streamer architecture works, and how it can
best be utilized. Then we go into the details of our NVMe Streamer and close by sharing

some experimental data with you.
2. Non Volatile Memory Express (NVMe)

To better understand the functioning of our NVMe Streamer we need to dig a little bit
into the basics of the NVMe protocol. For more info about NVMe and in particular the
NVMe specification (currently published as Revision 1.4) we recommend you visit the

NVMe website: https://nvmexpress.org/resources/specifications/

Key to NVMe is its concept of NVMe Queues which are
Tail implemented as circular buffers. NVMe distinguishes
between two types of queues: /0 Queues used for I/0

Commands (which is “reading” and “writing” data) and Admin

Heaa" Queues for the administration commands - used to configure
Logical View those I/0 Queues and for controller management. Each type

— has a so-called Submission Queue (SQ) used from the host to
“ » the device to send commands, and, typically, for each SQ a
—_— corresponding Completion Queue (CQ) from the device back
to the host to post command completions. All those

Head - [Cueue Size commands and completions are transported by PCle
| Transaction Layer Packets (TLP). The NVMe specification

7 allows for up to 64K I/0 SQs and CQs and each queue can

HrENamaY have up to 64K entries. This makes very scalable systems

Physical View in Memory

where one or more queues can run - as software - on a CPU

Core (to be precise, each CPU Core can work on its own set of

2019-12-16 © MLE MLE TB-20191216-03 3

https://nvmexpress.org/resources/specifications/

NVMe Streamer for High-Speed FPGA Data Acquisition & Recording

queues with no inter-core locking or communication required; this is very different from

for example AHCI with just one queue).

Controller
Managment

NVMe Controller

For the NVMe Streamer we have implemented I/0 Queue handling in Programmable
Logic. This gives us deterministic timing behaviour and allows to scale performance
(read/write bandwidth) along with the attached NVMe SSD. Admin Queues which are
not in the data path for reading/writing and thus have no impact on performance we

run as bare-metal software in a small embedded CPU.

Btw, if you want to know more about NVMe, here is a nice tutorial given by Kevin Marks
at the Flash Memory Summit 2013:

https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2013/20130812
PreConfD_Marks.pdf

2019-12-16 © MLE MLE TB-20191216-03 4

https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2013/20130812_PreConfD_Marks.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2013/20130812_PreConfD_Marks.pdf

mle

missing link electronics

NVMe Streamer for High-Speed FPGA Data Acquisition & Recording

3. NVMe Streamer Architecture

First, our NVMe Streamer is implemented entirely in Programmable Logic. This allows
you to implement a high-speed data acquisition system even when using an FPGA

without integrated CPUs, such as Xilinx Kintex or Virtex Ultrascale+ FPGAs, for example.

Second, for resource efficiency and to scale read/write performance along with the

NVMe SSD, we use parameterizable AXI4-Streams, as shown in Fig. 3:

Programmable Logic (PL)

PCle 3.0/4.0

—p

x1, %2, x4, x8

128bit
@250MHz

-

32 Queue entries of 16 KB each (512 KB)

16k Queue entries of 128 KB each (2 GB)

[

Fig. 3: Block Diagram of NVMe Streamer

Today, most NVMe SSDs have a PCle 3.0 x4 connection which has a theoretical
bandwidth of 4GB/s. Thus the data input and data output of our NVMe Streamer each
are implemented using 128 bit wide AXI4-Streams running at 250 MHz. These feed into
an memory-mapped AXI4-Switch, connected to an NVMe Host Controller, to (optional)
PL RAM, and to the DMA/Bridge Subsystem for PCle. This DMA/Bridge PCle Subsystem
has a block which is configured to be a PCle Root-Port and ultimately connects to the
NVMe SSD via one of the PCle Hard-IP Cores.

This datapath is controlled by a combination of a Xilinx MicroBlaze embedded CPU and
an Open-Source NVMe Host Controller which is responsible for issuing NVMe requests
and receiving NVMe responses. The CPU runs a bare-metal software for NVMe Admin:

Upon start-up this software does the so-called PCle Enumeration and, thereby, “finds”

2019-12-16 © MLE MLE TB-20191216-03 5

mle

NVMe Streamer for High-Speed FPGA Data Acquisition & Recording

the attached NVMe SSD. Although our block diagram only shows one NVMe SSD, in
principle multiple SSDs can be attached, depending on your storage capacity needs. The
NVMe SSD is initialized and identified (using the NVMe “identify” namespace command).
Once everything has been set up, this software switches over to I/0 Queue handling,

effectively for reading/writing data from/to the NVMe SSD.

The footprint of this software is small and thus, we only need a little BRAM. This
software also manages an AXlI4-Lite interface for control and status plus a debug UART.

The control and status commands you can issue via this interface are:

e Get media size and model information of attached SSD
e Set starting write address on SSD medium

e Set maximum write address on SSD medium

e Start and stop writing

e Set starting read address on SSD medium

e Set maximum read address on SSD medium

e Start and stop reading
3.1. Buffers for Gapless and Lossless Recording with SSD

A word on the (optional) PL-RAM: Depending on your application and the specs of your
NVMe SSD you may or may not need this RAM as a stream buffer!

Modern SSDs support sustained writes at high data rates. However, every now and then
the SSD may take a small “pause” of a few milli-seconds from writing, for internal
house-keeping etc. If your data source does not support back-pressure, like a camera,

for example, then you will need to buffer the data to avoid data loss.

To better understand this SSD behavior, we have included some charts from

www.storagereview.com and from www.tomshardware.com .

2019-12-16 © MLE MLE TB-20191216-03 6

http://www.storagereview.com/
http://www.tomshardware.com/

NVMe Streamer for High-Speed FPGA Data Acquisition & Recording

ST
Preconditioning Curve - 4K 100% Write [Max Latency] %
200
175
150
E 125
=
=
@ 100
®
-1
>
g 75
50
* dd
]
0 20 40 B0 B0 100 120 140 160 180 200 220 240 260 280 300 320 340 380
Minutes

Memblaze 2.5" PBlazed 3.2TB
M Samsung 2.5" XS1715 1.6TB
M Intel 2.5" P3700 2TB

M Toshiba 2.5" PX04P 3.2TB

https://www.storagereview.com/toshiba_px04p nvme _ssd review 25

Sequential Steady State Write Workload

‘Write in MB/s - Higher is Better tom's HARDWARE
3,500

3,000 _Hll

2,500 l\

2,000 1

1,500 F | | 2 i
1oool !

0)
3 g
= Crucial P1 500GB ADATA XPG 5XB8200 480GB
—— Samsung 970 EVO Plus 500GB —— Intel SSD 760p 512GB
—— MyDigitalS5D BPX Pro 480GB FW 12.1 —— Gigabyte Aorus RGB 512GB
—— MyDigital55D SBX 512GB Samsung 860 EVO 500GB

Fig. 4: Example Write Performance
As Fig. 4 shows, many SSDs reduce bandwidth performance when writing data over long
periods of time. This is due to the Flash Translation Layer (and sometimes also to

protect the SSD from overheating) and, obviously, depends on the Flash Controller

2019-12-16 © MLE MLE TB-20191216-03 7

https://www.storagereview.com/toshiba_px04p_nvme_ssd_review_25

mle

NVMe Streamer for High-Speed FPGA Data Acquisition & Recording

integrated, what type NAND Flash has been used, SLC, MLC, TLC, QLC, etc. and other
SSD details. This article elaborates on that topic:
https.//www.howtogeek.com/428869/ssds-are-getting-denser-and-slower-thanks-to-qlc-
flash/

From our experience at MLE, this behaviour can even be different for SSDs from the
same vendor, same model but different capacity or firmware. That's why we

recommend to always consult your SSD vendor's datasheet!

But, what are the implications when building a gapless recording application? When do |

need buffers, and at what size?

If your data producer supports back-pressure, obviously, you won't need any stream
buffer. But, if you are using cameras or similar sensors which can not be stalled, you will
need a buffer, for those short moments when the SSD cannot digest any data.
Therefore, our AXI4-Switch streams the data through a stream-buffer to avoid data loss

(i.e. recording “gaps"”). This is parameterizable by you as follows:

1. You can select the length of the I/0 Queues. A reasonable minimum number
would be 32 Queue Entries which still gives you OK performance. A sensical high
value would be 16k Queue Entries.

2. You can also pick a size for the Queue Entries, starting from a reasonable low
value of 16k Bytes up to, for example, 128k Bytes. Typically you want to adjust
the Queue Entry size to match the granularity of the data you want to record as
well as the NVMe SSD's spec.

For a minimum buffer you will only need 512k Bytes (32 * 16 kB) which fits well into the
UltraRAM of many FPGA devices. A large buffer may be up to 2 GB (16k * 128 kB) which
can be external DDR RAM, or integrated HBM2 RAM.

3.2. IP-Core Landscape

For cost and maintenance reasons we have integrated 3rd party IP Cores from Xilinx
and from the Open-Source Community to implement NVMe Streamer. The most

important Xilinx IP Cores are all free-of-charge and come with the Xilinx Vivado tool:

2019-12-16 © MLE MLE TB-20191216-03 8

https://www.howtogeek.com/428869/ssds-are-getting-denser-and-slower-thanks-to-qlc-flash/
https://www.howtogeek.com/428869/ssds-are-getting-denser-and-slower-thanks-to-qlc-flash/

mle

NVMe Streamer for High-Speed FPGA Data Acquisition & Recording

e PGO085 - AXI4-Stream Infrastructure IP Suite v3.0 for Vivado Design Suite

https://www.xilinx.com/support/documentation/ip_documentation/axis_infrastru

cture ip suite/v1 1/pg085-axi4stream-infrastructure.pdf

e PGO059 - AXI Interconnect v2.1 for Vivado Design Suite

https://www.xilinx.com/support/documentation/ip_documentation/axi_interconn

ect/v2 1/pg059-axi-interconnect.pdf

e PG116 - MicroBlaze Micro Controller System 3.0

https://www.xilinx.com/support/documentation/ip_documentation/microblaze

mcs/v3 _0/pg116-microblaze-mcs.pdf
e PG195 - DMA/Bridge Subsystem for PCl Express v4.1

https://www.xilinx.com/support/documentation/ip_documentation/xdma/v4 1/p

2195-pcie-dma.pdf

e PG213 - UltraScale+ Devices Integrated Block for PCl Express v1.3

https://www.xilinx.com/support/documentation/ip_documentation/pcie4 uscale

plus/vl 3/pg213-pcie4-ultrascale-plus.pdf

The Open-Source IP Core originates from our fellow Xilinx Alliance Partner Eideticom
and initially was implemented as an NVMe Host Controller for IBM's OpenCAPI / SNAP:

https://github.com/open-power/snap/tree/master/hardware/hdl/nvme

2019-12-16 © MLE MLE TB-20191216-03 9

https://www.xilinx.com/support/documentation/ip_documentation/axis_infrastructure_ip_suite/v1_1/pg085-axi4stream-infrastructure.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axis_infrastructure_ip_suite/v1_1/pg085-axi4stream-infrastructure.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_interconnect/v2_1/pg059-axi-interconnect.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_interconnect/v2_1/pg059-axi-interconnect.pdf
https://www.xilinx.com/support/documentation/ip_documentation/microblaze_mcs/v3_0/pg116-microblaze-mcs.pdf
https://www.xilinx.com/support/documentation/ip_documentation/microblaze_mcs/v3_0/pg116-microblaze-mcs.pdf
https://www.xilinx.com/support/documentation/ip_documentation/xdma/v4_1/pg195-pcie-dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/xdma/v4_1/pg195-pcie-dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie4_uscale_plus/v1_3/pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie4_uscale_plus/v1_3/pg213-pcie4-ultrascale-plus.pdf
https://github.com/open-power/snap/tree/master/hardware/hdl/nvme

NVMe Streamer for High-Speed FPGA Data Acquisition & Recording

3.3. Applications & Use

The following Fig. 5 shows an exemplary hardware test setup based which we have

been using at MLE for development and lab testing purposes.

Fig. 5: Lab Hardware Setup using the Xilinx ZCU106 DevKit

Hardware includes the Xilinx ZCU106 Development Kit, the Opsero FPGA Drive FMC
board with connected NVMe M.2 SSD (Samsung SSD 960 EVO 250GB).

Below you see the output of the subsystem application console until NVMe SSD

enumeration step:

INFO: Start ...

INFO: Found AXI4-Stream to NVMe Controller IP version 1.1.0
INFO: Waiting for PCIe Root Port link up

INFO: PCIe Root Port link is established as Gen4 x3

INFO: Start Enumeration

INFO: Enumeration - discover devices

--00:00.0 - Device/Vendor:0x913410EE - Class 0x060700

2019-12-16 © MLE MLE TB-20191216-03 10

http://www.xilinx.com/zcu106
https://opsero.com/product/fpga-drive-fmc-dual/

mle

missing link electronics

NVMe Streamer for High-Speed FPGA Data Acquisition & Recording

2019-12-16 © MLE MLE TB-20191216-03 11

mle

NVMe Streamer for High-Speed FPGA Data Acquisition & Recording

And here is the output of the test application console:

INFO: Start ..
(...)

R e I I S I I S I S R I S I I b S I S I S I S I S I I b I S I S b S b S b R I S E S b b S

TEST: test performance with different chunk counts per session
R R R SRR S SRS RS EEEE RS R RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRS SRS SRS

Write and read data with incrementing number of chunks,

and measure the transfer speed while doing so.
* Kk ok k k ok ok ok

***x pPerformance Summary ***

| #chunks | write | read

1	750 MiB/s	13 MiB/s
2	1004 MiB/s	18 MiB/s
4	1192 MiB/s	134 MiB/s
8	1321 MiB/s	627 MiB/s
16	1399 MiB/s	1482 MiB/s
32	1438 MiB/s	1616 MiB/s
64	1461 MiB/s	1862 MiB/s
128	1471 MiB/s	1863 MiB/s
256	1047 MiB/s	1885 MiB/s
512	552 MiB/s	1896 MiB/s
1024	395 MiB/s	1901 MiB/s
2048	395 MiB/s	1904 MiB/s
4096	380 MiB/s	1905 MiB/s
8192	262 MiB/s	1906 MiB/s
16384	332 MiB/s	1907 MiB/s
32768	257 MiB/s	1907 MiB/s

NOTE: The performance of transferring few chunks is significantly impacted

by setup and teardown as well as potential debug printouts via the NVMe Subsystem UART.
Just the AXI4-Stream transfers are much faster and almost constant regardless of number of
chunks.

KAk hkhkhkhkhkhkhkhkhkhkhkhkhkhk bk hkhkhkhk kb hk kb hkhkrhkhkr kv hkhkrhkhkr kb hrhkhkhkhkhkhkhkhkhkhkhhkhkhkhkxkkx*k

TEST: test write read full disk

KA A KA AR A A A A A A A A A A AR A A A A A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A AR KK
Test performs write and read of maximum available number of chunks
Expect no data to have been overwritten or corrupted.

kK kKkkkKkkKk

INFO: Writing all 1907801 chunks of NVMe SSD

INFO: Writing 1907801 chunks to NVMe SSD Q@ 0xO0

INFO: Writing 250059292672 bytes took 1179256165912 ns => 202 MiB/s
INFO: Reading 1907801 chunks from NVMe SSD @ 0xO

INFO: Reading 250059292672 bytes took 125291544760 ns => 1903 MiB/s
INFO: Captured WRITE ADDR _LAST: 0x3a38b00000

INFO: Captured READ ADDR LAST: 0x3a38b00000

(co0o)

INFO: ... End

You may have noticed above that the write performance drops after writing 128..256
chunks. This behavior corresponds to what we described above in Section 3.3. Similarly,
the overall write performance reduces another time when writing the entire disk. Please
keep this in mind when building your Stream Recording system. And, don't hesitate to

contact us in case of questions or need for help!

2019-12-16 © MLE MLE TB-20191216-03 12

mle

NVMe Streamer for High-Speed FPGA Data Acquisition & Recording

4. Availability & Resource Count

MLE has successfully tested NVMe Streamer on Xilinx Virtex 7 690T, and more recently,

on Xilinx UltraScale+ FPGAs and MPSoC. For release implementation we have used Xilinx

Vivado Version 2018.1 (and like with other subsystems we plan to update and test for

newer Vivado versions). The following table gives an update on the resource count

when targeting a Xilinx XCZU7EV-FFVC1156-2 device:

Name

-nvme_subsystem_u0 (nvme_subsystem)

--axi_activity_monitor_0
(nvme_subsystem_axi_activity_monitor_0_0)

--axi_activity_monitor_1
(nvme_subsystem_axi_activity_monitor_1_0)

--axi_datamover_0 (nvme_subsystem_axi_datamover_0_0)
--axi_interconnect_0 (nvme_subsystem_axi_interconnect_0_0)
--axi_interconnect_1 (nvme_subsystem_axi_interconnect_1_0)
--axi_interconnect_2 (nvme_subsystem_axi_interconnect_2_0)
--axi_interconnect_3 (nvme_subsystem_axi_interconnect_3_0)
--axis_flusher_0 (nvme_subsystem_axis_flusher_0_0)
--axis_nvme_ctrl_0 (nvme_subsystem_axis_nvme_ctrl_0_0)

--datamover_mm_cmdsts_0
(nvme_subsystem_datamover_mm_cmdsts_0_0)

--ddr4_0 (nvme_subsystem_ddr4_0_0)

--microblaze_0 (microblaze_0_imp_1JM6SPX)

--nvme_host_0 (nvme_subsystem_nvme_host_0_0)
--nvme_status_leds_0 (nvme_subsystem_nvme_status_leds_0_0)
--util_ds_buf_0 (nvme_subsystem_util_ds_buf_0_0)
--util_vector_logic_0 (nvme_subsystem_util_vector_logic_0_0)

--xdma_0 (nvme_subsystem_xdma_0_0)

CLB LUTs

48824

1985
1932
641

4852
4769

641
27

14483
2079
1347
15

16038

CLB
Registers

61254

2586
3061
909
9039
5940
10
841
73

17690
1879
1600
96

17518

CLB
9931

439
830
199
1375
1961

196
25

2929
448
443
18

3356

Block RAM
Tile

169.5

25.5
32
125

44

Besides these resources zero UltraRAM and a total of 6 DSP blocks have been used.

In general NVMe Streamer can be integrated into any Xilinx device starting from Virtex-7

over UltraScale, UltraScale+. MLE plans to also support Xilinx new Versal devices.

2019-12-16 © MLE

MLE TB-20191216-03

13

mle

NVMe Streamer for High-Speed FPGA Data Acquisition & Recording

For easy evaluation we have so-called Evaluation Reference Designs which target the
Xilinx ZCU106 Development Kit and the Sidewinder-100 board from Fidus Systems.

Conclusion, Outlook & Product Roadmap

We presented NVMe Streamer as a technology for gapless and lossless data streaming
and recording using Xilinx FPGAs. Our NVMe Streamer does not run software on
Application CPUs to deliver full performance and functionality. Hence, this is a “PL-only”

implementation, or a so-called Full Accelerator.

NVMe Streamer complements other technology from Xilinx which uses the Processing
System (PS) inside Zynq UltraScale+ MPSoC.

In this PS-based implementation by Xilinx NVMe runs ins software under Linux and,

hence, is not accelerated. Because this PS-based implementation uses interrupts and
different SSDs use PCle interrupt standards, legacy, MSI or MSI-X, differently, you may
notice compatibility issues between the PS-based implementation and your SSD. MLE’s
NVMe Streamer, for performance reasons, does not use IRQ but polling, so there will bo

no such compatibility issues with NVMe Streamer.

Since we released NVMe Streamer we have been working on a couple of enhancements.
One approach has started to go after very high read/write performance. By accelerating
the 1/0 Queue handling and optimizing the number of I/0 Queue Entries and Queue
Entry sizes we are tuning NVMe Streamer to meet those new high-bandwidth NVMe
SSDs. NVMe technology such as 3D-Xpoint, for example, supports read/write
bandwidths of 10GB/s and more.

In another enhancement we plan to support so-called PCle Peer-to-Peer DMA. In such
systems the FPGA operates as an Endpoint, sits in a server and connects to the server's
PCle Root-Complex via a PCle Switch. Also connected to that same PCle Switch is one, or
more NVMe SSDs. NVMe Streamer then replaces the integrated PCle Root-Complex with
a Peer-to-Peer DMA capable Endpoint block to read/write data from/to an adjacent SSD.

In yet another enhancement we plan on combining NVMe Streamer with the Network
Protocol Accelerator Platform (NPAP) from Fraunhofer (http://MLEcorp.com/NPAP) to

2019-12-16 © MLE MLE TB-20191216-03 14

http://www.xilinx.com/zcu106
https://fidus.com/products/sidewinder/
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842417/Linux+ZynqMP+PS-PCIe+Root+Port+Driver
http://mlecorp.com/NPAP

mle

NVMe Streamer for High-Speed FPGA Data Acquisition & Recording

allow NVMe streaming for remote TCP/IP or UDP/IP connected producers and/or

consumers.
Please do not hesitate to contact us in case of any special needs or services.

And, please go ahead and contact us at http://MLEcorp.com/nvme for a free-of-charge

Evaluation Reference Design of NVMe Streamer!
Authors

David Epping, Sr. Member Technical Staff, Missing Link Electronics GmbH
Karol Budniak, Design Engineer, Missing Link Electronics GmbH
Endric Schubert, PhD, CTO, Missing Link Electronics, Inc.

Contact Information

Missing Link Electronics, Inc.
2880 Zanker Road, Suite 203
San Jose, CA95134

USA

+1-408-475-1490

Missing Link Electronics GmbH
Industriestrasse 10
89231 Neu-Ulm

Germany

www.missinglinkelectronics.com

2019-12-16 © MLE MLE TB-20191216-03 15

http://mlecorp.com/nvme
http://www.missinglinkelectronics.com/

mle

NVMe Streamer for High-Speed FPGA Data Acquisition & Recording

About Missing Link Electronics

Founded in 2010, MLE (Missing Link Electronics) is a Member of PCI-SIG, Premier
Member of the Xilinx Alliance offering design services and integrated subsystems (FPGA

IP Cores plus software).
Our Vision

At MLE we share the vision of technology leaders such as IBM and Xilinx: General
purpose compute architectures are running out of steam. Domain-specific compute

architectures have become a necessity to deliver higher compute performance.

This drives compute-hungry applications such as Autonomous Vehicles or Datacenter
Analytics or Deep Neural Network algorithms for Edge Inference to adopt
Field-Programmable Gate-Arrays (FPGA), either as highly integrated, single-chip
Adaptable Compute Acceleration Platforms (ACAP) or as reconfigurable compute
companions tightly coupled to powerful CPUs via links that deliver massive bandwidth

at very low latency.
Our Mission

is supporting customer projects with deep expertise and hands-on design services,
offering pre-validated FPGA subsystems of FPGA blocks integrated with (open source)
software, applying and promoting novel FPGA design methodologies for increased
design productivity, including High-Level Synthesis, and fostering FPGA education via

strong relationships with teaching and research engagements at Universities.

2019-12-16 © MLE MLE TB-20191216-03 16

