Technical Brief 20141216 from Missing Link Electronics:

XPS USB Host Controller Developer’s Guide

This MLE Technical Brief is intended for embedded systems and FPGA designers who
seek to integrate the XPS_USB_HOST Controller IP Core. Originally developed and shipped
by Xilinx, Inc. MLE has been marketing and supporting this IP core for Xilinx customers,
since October 2011. This Technical Brief gives you an introduction into the functionality
of USB 2.0 in general, describes the usage in a FPGA design and provides references to
further documentation.

Foundation of this Technical Brief is the XPS_USB_ Host Controller Linux Reference De-
sign from MLE. Using this reference design the various modes of USB can be evalu-
ated based on some basic and easy to reproduce test-cases. This highlights how the
XPS_USB_HOST Controller IP Core operates in conjunction with Linux running on an em-
bedded CPU (Xilinx MicroBlaze or PowerPC) inside a Xilinx FPGA device.

Copyright © 2014 Missing Link Electronics. All rights reserved. Missing Link Electronics, the stylized Missing Link Electronics
MLE logo are the service mark and/or trademark of Missing Link Electronics, Inc. All other product or service names and
trademarks are the property of their respective owners.

Technical Brief 20141216 MissingLinkElectronics.com Page 1

m-l.e XPS USB Host Controller

— Technical Brief 20141216 —

Contents
USB Backgrounder 3
1.1 SpeedModesof USB e 3
1.2 BusTopologyof USB 3
1.3 Transfer Typesof USB 3
1.4 USBHotPlug e 4
1.5 Further Documentation 4
The XPS_USB_HOST Controller IP Core 5
2.1 SupportedFeatures 5
2.2 SupportedSpeedModes e 6
2.3 Revisionsand Deliverables, 6
2.4 License Management 7
25 Timing Closure e 9
The XPS_USB_Host Controller Linux Reference Design 15
3.1 GettingStarted 15
3.1.1 Hardware 15
3.1.2 LinUX 16
3.1.3 CF-CardBootlmage 17
3.1.4 ML507Board Settings 18
3.1.5 StartingUp 19
3.2 AbouttheDesign e 19
3.2.1 DesignComponents 19
3.2.2 |/O-Standards for the ML507 board 20
3.2.3 Pin-out forthe ML507 board. 21
3.2.4 Software/Linux/Driver 21
Designing with AXI under Vivado 23
Analysis and Testing 24
5.1 TestingSpeedModes 24
5.2 Testing USB Device Connectivity 24
5.2.1 USB Low-SpeedDevices 25
5.2.2 USBFull-Speed Devices 25
5.2.3 USBHigh-SpeedDevices 26
5.3 Diagnosing the Evaluation License Time-bomb 27
Technical Brief 20141216 MissingLinkElectronics.com Page 2

1 USB Backgrounder

Universal Serial Bus (USB) is an industry standard developed in the mid-1990s. Used ca-
bles, connectors and communication protocols for connection, communication and power
supply between computers and electronic devices are defined therein.

1.1 Speed Modes of USB

USB 2.0 declares the speed modes low-speed, full-speed and high-speed. Not every USB
2.0 device must support all three speed modes. The XPS_USB_HOST Controller IP Core
only supports full-speed and high-speed modes.

1.2 Bus Topology of USB

The USB physical interconnect is a tiered star topology. A hub is at the center of each star
and the wire segments are point-to-point connections.

There is only one USB host in a USB hierarchy. The USB interface to the host computer
system is referred to as host controller. This host controller may be implemented in a
combination of hardware, firmware, or software. A root hub is integrated within the host
system to provide one or more attachment points.

USB devices are either hubs, which provide additional attachment points to the USB or
functions, which provide capabilities to the system, such as e.g. keyboards, web-cams,
storage devices, or speakers.

USB On-The-Go (OTG) allows USB devices to act as USB host. This enables the device
to switch operation between host and device.

The XPS_USB_HOST Controller IP Core can only act as a USB host.

1.3 Transfer Types of USB

USB supports functional data and control exchange between the USB host and a USB
device as a set of either uni-directional or bi-directional pipes. USB data transfers take
place between host software and a particular endpoint on a USB device. In general, data
movement though one pipe is functionally independent from the data flow in other pipes.

The USB architecture comprises four basic types of data transfers:

Control-Transfer:

Control data is used by the USB system software to configure devices when they are first
attached. Other driver software can choose to use control transfers in implementation-
specific ways. Data delivery is loss-less.

Technical Brief 20141216 MissingLinkElectronics.com Page 3

m-l_e XPS USB Host Controller

Bulk-Transfer:

Bulk data typically consists of larger amounts of data, for example used for printers or scan-
ners. Bulk data is sequential. Reliable exchange of data is ensured at the hardware level
by using error detection in hardware and invoking a limited number of retries in hardware.
Also, the bandwidth taken up by bulk data can vary, depending on other bus activities.

Interrupt-Transfer:

A limited-latency transfer to or from a device is referred to as interrupt data. Such data may
be presented for transfer by a device at any time and is delivered by the USB at a rate no
slower than specified by the device. Interrupt data typically consists of event notification,
characters, or coordinates that are organized as one or more bytes. Unlike the name
suggests, a USB device does not trigger CPU interrupts. The USB host has to poll devices
for new information.

Isochronous-Transfer:

Isochronous data is continuous and real-time in creation, delivery, and consumption. Timing-
related information is implied by the steady rate at which isochronous data is received and
transferred. Isochronous data must be delivered at the rate received to maintain its timing.
A typical example of isochronous data is voice. The timely delivery of isochronous data is
ensured at the expense of potential transient losses in the data stream. In other words, any
error in electrical transmission is not corrected by hardware mechanisms such as retries.

The XPS_USB_HOST Controller IP Core supports all transfer types of the USB 2.0 stan-
dard listed above.

1.4 USB Hot Plug

USB 2.0 is hot pluggable by specification. This means that a USB device can be plugged
to a running system. The XPS_USB_HOST Controller IP Core is ready for hot plugging.

1.5 Further Documentation
The information in this chapter is derived from USB 2.0 specification [1]. For further infor-
mation please see the following documentations:
+ USB 2.0 specification [1]
* MLE website for the XPS_USB_HOST Controller IP Core [2]
+ Xilinx data-sheet for the XPS_USB_HOST Controller IP Core [3]
« Xilinx Wiki - USB Host System Setup [4]
Xilinx Wiki - USB Host Controller Driver [5]

Technical Brief 20141216 MissingLinkElectronics.com Page 4

m-l_e XPS USB Host Controller

2 The XPS_USB_HOST Controller IP Core

The XPS_USB_HOST Controller IP Core is designed to act as controller of a USB host
PHY. USB On-the-Go is not supported. Further a ULPI USB PHY is required to act with
the IP core. Such a PHY can be e.g. a MLE-PHY or a USB3300 USB HS Board from

Waveshare [6].

Figure 1 shows the block diagram of the core.

EHCI Control
State Machine

'
I Register Module . Link Manager
PLBV46 % '
To PLBV46 Slave Por.tSC
Module Registers Multi-Speed
A Link Controller
Capability 1
Registers ,
Interrupt ' ULPI
Out Operational . (1 Port)
Registers : Transaction
Reset : Translator

Module |EHCI Controller !
1
1
]
1

Clock Domain
Synchronizer

PLBV46 | |
ToPLBV46 | Master [22P1S 1 Eng
Module 35 bits| SGDMA

it

1
1
PLB Clock Domain : 60 MHz PHY Clock Domain

Figure 1: Block diagram of the xps_usb_host-Core

2.1 Supported Features

The XPS_USB_HOST Controller IP Core:

 supports full-speed and high-speed modes,

is a USB host (and only a host),

supports all transfer types of USB 2.0,

supports hot plugging,

is EHCI compliant and, thereby, supported by Linux.

To USB 2.0 PHY

Technical Brief 20141216 MissingLinkElectronics.com

Page 5

2.2 Supported Speed Modes

By default the XPS_USB_HOST Controller IP Core supports only the high-speed mode.
As an option the full-speed mode can also be enabled, this must be done prior to FPGA
synthesis. Figure 2 shows the XPS Core Config of the XPS_USB_HOST Controller IP
Core with enabled full-speed Support and Listing 1 shows the corresponding line in the
MHS-file (change the parameter to 0 to disable Full-speed mode). The low-speed mode is
not supported at all.

2. XPS Core Config - xps_usb_host_0 - xps_usb_host_v2_00_a <@topf> ¥ &) X

Component Instance Name ixps_usb_host_o \

(+] User | System | U [F][]
‘_' = Al
>
1_' Enable the Support for USB Full Speed 3¢
E
(2
‘.p Invert the Vbus Valid Indicator L]
ut|-
(2
[Use External PHY Vbus Valid Comparator Indicator Signal (]
W|e
L L‘T Use Internal Power for VBUS m
|-
= Enable Host Power Control (]

[

(<] [«]»]

»2:1 Show All Ports

| |
OK ‘ Cancel M Help ‘

Figure 2: XPS Core Config of the xps_usb_host-Core

Listing 1: parameter for enabled full-speed mode in mhs-file
1 ‘ PARAMETER C_SUPPORT_USB_FS = 1

2.3 Revisions and Deliverables

There are different varieties of the XPS_USB_HOST Controller IP Core available. How
they can be purchased and what has to be considered because of their licensing is shown
in Table 1.

Originally shipped with Xilinx ISE are so-called Evaluation Cores which comprise a time-
bomb. This time-bomb will trigger after approximately eight hours, effectively disabling the
operation of the XPS_USB_HOST Controller IP Core. Please contact MLE [7] to get a fully
licensed IP Core without any time-bombs. You will receive two packages: (1) pcore for
EDK and (2) FLEXIm license key file.

Technical Brief 20141216 MissingLinkElectronics.com Page 6

m-l_e XPS USB Host Controller

Table 1: versions of XPS_USB_HOST Controller IP Core and license options

IP version | delivery \ license
1.00.a Xilinx ISE 11.x evaluation only
1.01.a Xilinx ISE 11.x & 12.x evaluation only
1.02.a MLE compile-time license
2.00.a MLE compile-time license

The XPS_USB_HOST Controller IP Core can be used like any other pcore: Unpack both
packages into your design project. The corresponding core directory, e.g. "xps_usb_host_v2_00_a",
has to be copied into the pcore directory of the design project. If the XPS GUI is already

open, it is required to rescan the user repositories. To install the FLEXIm license key file

please read the Xilinx user guide UG798 [8] or follow the instructions shipped with the

license key file.

2.4 License Management

To build a design with the XPS_USB_HOST Controller IP Core a license key is required.
The different licenses are described above and the following will describe the handling of
licenses and cores from MLE.

In the GUI of XPS it is possible to check the Design License Status under the Hardware
section. Because it is a compile-time license key this window looks like Figure 3. This win-
dow is also shown at the end of every build process (in GUI mode) of a design instantiating
this core.

c . Design License Status <@topf> Y &)

(x

Design License Status

All cores in this design must be fully licensed before you can take this design to production.
Click on core to understand the limitations imposed by the license of each core.

Core Name Instance Name License Type
xps_usb_host, 2.00.3] xps_usb_host_0 Hardware_Evaluation
[Do not show this dialog box again

Figure 3: Design License Status of a design including the XPS_USB_HOST Controller IP Core

To check the license status of the XPS USB_HOST Controller IP Core start the Xilinx Li-
cense Configuration Manager. If the licensing is okay, the entry ipmsngink_xps_usb_ehci_full
will be displayed as shown in Figure 4 with green highlighted entries for the correct Host

Technical Brief 20141216 MissingLinkElectronics.com Page 7

m-l_e XPS USB Host Controller

g linl

¢ % ®, Xilinx License Configuration Manager <@topf> v

A X

Acquire a License \ Manage Licenses [Borrow/Restore Licenses ‘ Return Licenses ‘ Internet Settings |

Instructions: Click the "Load License" button to either load a response XML file into XLCM to activate your machine For Xilinx tools and IP, or copy a certificate-based license (.lic file) into the local

Xilinx directory. Xilinx applications automatically detect valid, node-locked licenses (*.lic) residing in the local .Xilinx directory.

To point to a floating server license, or to point to license files in locations other than .Xilinx, set one of the environment variables below. (Linux users will need to make these settings outside of this

application.) Examples: 1234@server;C:\licenses\Xilinx.lic (Windows) or 1234@server:/usr/local/flexim (Linux)

XILINXD_LICENSE_FILE |]

LM_LICENSE_FILE [27070@localhost]

HIDDEN [%] Hide Built-in Free Licenses Clear Cache
Feature S/W or Version | Expiration |License Count License| Information Server | File Trusted | Host Id HostId |License |Search | %

IP Core Limit Date Type In Use Name |Name |Storage Matches | CRC Order D

v_tc IP:Bought 2014.11 Permanent Nodelocked Uncounted License_Type:Bought... /ho... |No 00270e0a303a No Okay 00129
ipmsnglnk_xps_usb_ehci_full =1l S N] Permanent Nodelocked Uncounted License_Type:Bought /ho... |No 902b3431171e |Yes Okay 00001
y ¢ IP:Bought 0 Permane odelocked ounted icen pe:Bough 0 Q 033033 No ka 9| (=]
~ Local System Informati

Hostname: topF

Network Interface Card (NIC) ID: 902b3431171e

C: Drive Serial Number: (not supported on this platform)

FLEXID Dongle ID: (not supported on this platForm)

Figure 4: Xilinx License Configuration Manager

id and License CRC. For more information on licensing please see the Xilinx User Guide
UG798 [8].

After a successful build of a design instantiating the XPS_USB_HOST Controller IP Core
the message of Listing 2 can be found in the log file. Please note that the license is
(erroneously) called Hardware Evaluation even though a proper license key has been in-
stalled.

Listing 2: Message in log file after build with valid license key

1 | INFO:coreutil - Hardware Evaluation license for component <xps_usb_host> found. The
generated design will cease to function in the programmed device after operating
for some period of time. This allows you to evaluate the component in hardware.
You are encouraged to license this component.

2 |For ordering information, please refer to the product page for this component on: www
.xilinx.com

Without a valid license key the build will stop with an error case, printing one of the following
error messages on the console. Listing 3 shows the error that occurs while building a
design with a wrong host ID in the license key. Listings 4 and 5 show the error output
on console and in the called output file when building a design with the XPS_USB_HOST
Controller IP Core without any license key for this core.

Listing 3: Error message while building a design with the XPS_USB_HOST Controller IP Core with
a wrong host ID in the license key file

ERROR:EDK - INFO:Security:67 - XILINXD_LICENSE_FILE is set to
’>/home/share/old-opt/xilinx121 /ISE_DS/EDK/data/core_licenses:/home/fass/user
/.Xilinx:/home/fass/user/.mlew/xilinx/license.all’ in
/home/fass/user/.flexlmrc.

INFO:Security :68 - Please run the Xilinx License Configuration Manager
(xlcm or "Manage Xilinx Licenses")

O hwWN =

Technical Brief 20141216 MissingLinkElectronics.com Page 8

m-l_e XPS USB Host Controller

7 to assist in obtaining a license.

8 ERROR:Security:14 - No feature was available for ’XPS’.
9

10 Invalid host.

11 The hostid of this system does not match the hostid

12 specified in the licemnse file.

13 Feature: XPS

14 Hostid: 902b3431171e

15 License path:

16 C...)

Listing 4: Error message on console while building a design with the XPS_USB_HOST Controller
IP Core without license key

1 |INFO:EDK - The following instances are synthesized with XST. The MPD option
2 IMP_NETLIST=TRUE indicates that a NGC file is to be produced using XST

3 synthesis . IMP_NETLIST=FALSE (default) instances are not synthesized.

4 | INSTANCE : xps_usb_host_1 -

5 | /home/fass/user/workspace/usb_core_testing/ML_nolLic_unencripted_mleb507/syste
6 |m.mhs line 378 - Running XST synthesis

7 |ERROR:Xst:1484 - A core is unlicensed !

8 | ERROR:EDK - Aborting XST flow execution'!

9 | INFO:EDK - Refer to

10 /home/fass/user/workspace/usb_core_testing/ML_nolLic_unencripted_mle507/sy
11 nthesis/xps_usb_host_1_wrapper_xst.srp for details

12

13 |Running NGCBUILD

14

15 | Rebuilding cache

16 | ERROR:EDK - platgen failed with errors!

17 |make: #*** [implementation/xps_usb_host_1_wrapper.ngc]l Error 2

Listing 5: Error message in log file , mentioned on console

1 |Analyzing hierarchy for entity <xps_usb_host_1_wrapper > in library <work> (
architecture <STRUCTURE>).

2 | INFO:coreutil - No license for component <ipmsnglnk_xps_usb_ehci_full> found. You may
use the customization GUI for this component but you will not be able to
generate any implementation or simulation files.

xps_usb_host_1_wrapper_xst.srp

3

4 For license installation help, please visit:

5 www.xilinx .com/ipcenter/ip_license/ip_licensing_help.htm

6

7 For ordering information, please refer to the product page for this component on:
www.xilinx.com FLEX1m Error: No such feature exists. (-5,21)

8 |ERROR:Xst:1484 - A core is unlicensed !

2.5 Timing Closure

To ensure a proper timing of the signals between XPS_USB_HOST Controller IP Core and
USB PHY it is necessary to set constraints as described below. This constraints can be
found in the provided UCF-file. Figure 5 shows the timing of the ULPI signals with the delay
times of the USB3300 PHY as declared in the data sheet [9].

PLB-Clock:

In the design example the PLB_CLK runs with 100 MHz (clock period = 10ns) and 50 %
duty cycle. Master and slave PLB of the XPS_USB_HOST Controller IP Core must run at
the same clock. The constraint to this clock is shown in Listing 6.

Technical Brief 20141216 MissingLinkElectronics.com Page 9

mle XPS USB Host Controller

AWM = -

—_

(6, B0 SN SVl O R

Technical Brief 20141216 MissingLinkElectronics.com Page 10

— 16.667 ns periodic time —
ULPI_CLK H

—i2-5ns{— —i2-5nsi—
ULPI_INPUTS \ |
—! =5ns {— 11.667 ns before ULPI_CLK rising —i 22ns {«
valid for 13.667 ns —

T

ULPI_OUTPUTS | |
— 11.667 ns after ULPI_CLK rising —i 25ns j—

Figure 5: ULPI signals timing of the XPS_USB_HOST Controller IP Core

Listing 6: PLB-clock constraints

Set the PLB_CLK constraints
NET "PLB_CLK" TNM_NET "PLB_CLK";
TIMESPEC "TS_PLB_CLK" PERIOD "PLB_CLK" 10 ns HIGH 50%;

ULPI-Clock:
The ULPI_CLK runs with 60 MHz (clock period = 16667 ps) and 50 % duty cycle. This is
constrained in Listing 7.

Listing 7: ULPI-clock constraints

Set the xps_usb_host_O_ULPI_Clock_pin constraints

Net "xps_usb_host_O_ULPI_Clock_pin" CLOCK_DEDICATED_ROUTE = FALSE;

Net "xps_usb_host_O_ULPI_Clock_pin" TNM_NET = "xps_usb_host_O_ULPI_Clock_pin";

TIMESPEC TS_xps_usb_host_O_ULPI_Clock_pin = PERIOD "xps_usb_host_O_ULPI_Clock_pin"
16667 ps HIGH 50%;

Delay Offset of Dir-pin:

ULPI_Dir switches the direction of the data signals between input and output. The switching
delay must be smaller than 5ns, because of signal validity in the communication with the
ULPI PHY. To have a safety gap of 0.5 ns we set the MAXDELAY to 4.5 ns, like constrained
in Listing 8.

Listing 8: Delay offset of Dir-pin

Set MAX DELAY constraint on ULPI_Dir pin
NET "xps_usb_host_O/ULPI_Dir" MAXDELAY=4.5 ns;

Clock Domain Crossing between PLB and ULPI:
To constrain the clock domain crossing between the PLB and ULPI domains the code of
Listing 9 is required.

Listing 9: Clock domain crossing between PLB and ULPI

Cross clock domain timing Constraints between ULPI_Clk and SPLB_Clk
DMA is included and both slave and master plb clock frequencies are EQUAL

NET "xps_usb_host_O/ULPI_Clock" TNM_NET = "ulpi_O_clock_net";
NET "mb_plb/PLB_Clk" TNM_NET = "splb_O_clock_net";
TIMEGRP "ulpi_O_clock_grp" = "ulpi_O_clock_net";

m-l_e XPS USB Host Controller

—_

—_

- 0OWoONOULAWN =

QOWoOoO~NOOUOhAWN =

Technical Brief 20141216 MissingLinkElectronics.com Page 11

TIMEGRP "splb_O_clock_grp" = "splb_O_clock_net";

TIMESPEC TS_splb_O_to_ulpi_O_clk = FROM "splb_O_clock_grp" TO "ulpi_O_clock_grp" 32.2
ns DATAPATHONLY; # (2 * ULPI Clock period - 1)

TIMESPEC TS_ulpi_O_to_splb_O_clk = FROM "ulpi_O_clock_grp" TO "splb_O_clock_grp" 19.0
ns DATAPATHONLY; #(2 #* PLB Clock period &A§ 1)

ULPI-inputs:
The ULPI_Inputs are constrained with the code of Listing 10 and explained below.

Listing 10: ULPI-inputs constraints

NET "xps_usb_host_O_ULPI_Data_pin<0>" TNM ULPI_INPUTS ;
NET "xps_usb_host_O_ULPI_Data_pin<i1>" TNM ULPI_INPUTS;
NET "xps_usb_host_O_ULPI_Data_pin<2>" TNM ULPI_INPUTS;
NET "xps_usb_host_O_ULPI_Data_pin<3>" TNM ULPI_INPUTS ;
NET "xps_usb_host_O_ULPI_Data_pin<4>" TNM ULPI_INPUTS;
NET "xps_usb_host_O_ULPI_Data_pin<5>" TNM ULPI_INPUTS ;
NET "xps_usb_host_O_ULPI_Data_pin<6>" TNM ULPI_INPUTS;
NET "xps_usb_host_O_ULPI_Data_pin<7>" TNM ULPI_INPUTS ;
NET "xps_usb_host_O_ULPI_Dir_pin" TNM = ULPI_INPUTS;

NET "xps_usb_host_O_ULPI_Nxt_pin" TNM = ULPI_INPUTS;
TIMEGRP "ULPI_INPUTS" OFFSET = IN 11.667 ns VALID 13.667 ns BEFORE "

xps_usb_host_O_ULPI_Clock_pin" RISING;

The ULPI_INPUTS are output signals of the USB-PHY and they show delays relating to
the ULPI_CLK. In the case of a USB3300-PHY this delay amounts between 2ns and 5ns.
This means ULPI_INPUTS signals are valid from 2ns to 5ns after each rising edge of
ULPI_CLK. This values have to be subtracted from clock period of the ULPI_CLK:
16.667ns - 5ns = 11.667ns

16.667ns - (5ns-2ns)=13.667ns

So the ULPI_INPUTS signals are valid from 11.667 ns ns to 13.667 ns ns before each rising
edge of ULPI_CLK, like setin line 11 of Listing 10.

ULPI-outputs:
The ULPI_OUTPUTS are constrained with the code of Listing 11 and explained below.

Listing 11: ULPI-outputs constraints

NET "xps_usb_host_O_ULPI_Data_pin<7>" TNM ULPI_OUTPUTS;
NET "xps_usb_host_O_ULPI_Data_pin<6>" TNM ULPI_OUTPUTS;
NET "xps_usb_host_O_ULPI_Data_pin<5>" TNM ULPI_OUTPUTS;
NET "xps_usb_host_O_ULPI_Data_pin<4>" TNM ULPI_OUTPUTS;
NET "xps_usb_host_O_ULPI_Data_pin<3>" TNM ULPI_OUTPUTS;
NET "xps_usb_host_O_ULPI_Data_pin<2>" TNM ULPI_OUTPUTS;
NET "xps_usb_host_O_ULPI_Data_pin<1>" TNM ULPI_OUTPUTS;
NET "xps_usb_host_O_ULPI_Data_pin<0>" TNM = ULPI_OUTPUTS;
NET "xps_usb_host_O_ULPI_Stp_pin" TNM = ULPI_OUTPUTS;
TIMEGRP "ULPI_OUTPUTS" OFFSET = 0UT 11.667 ns AFTER "xps_usb_host_O_ULPI_Clock_pin"
RISING;

The ULPI_OUTPUTS are the input signals at the USB PHY and need to have a setup time
before each rising edge of the ULPI_CLK. In the case of a USB3300 PHY this delay is
5ns. This means ULPI_OUTPUTS signals have to be valid 5 ns before each rising edge of
ULPI_CLK, which can be set as shown in Listing 12.

Listing 12: ULPI-outputs timing

TIMEGRP "ULPI_OUTPUTS" OFFSET = 0UT 5 ns BEFORE "xps_usb_host_O_ULPI_Clock_pin"
RISING;

It is also possible to calculate the inverse. This means that ULPI_OUTPUTS signals are
valid 16.667 ns - 5ns = 11.667 ns after each rising edge of ULPI_CLK, like set in line 10 of
Listing 11.

Issue:

It may happen, that the constraint for ULPI_Dir, as described in Listing 8, is not met during
implementation of the XPS_USB_Host Controller Linux Reference Design. In this case the
error message shown in Listing 13 will appear on the console.

Listing 13: Error on console when the timing of a design is not met

—_

ERROR: 1 constraint not met.
PAR could not meet all timing constraints. A bitstream will not be generated.

The source of the timing problem can be found in the timing report under:
<design>/implementation/system.twr
If the error is as expected, a negative slack of ULPI_Dir can be found in the log file:

Listing 14: Negative slack of ULPI_Dir in the log file

—_

Slack: -0.001ns xps_usb_host_O/xps_usb_host_0/I_USBHC_LM/ulpi2mlc_ulpi_dir
Error: 4.501ns delay exceeds 4.500ns timing constraint by 0.001ns

1

Technical Brief 20141216 MissingLinkElectronics.com Page 12

Explanation:

ULPI_Dir switches the direction of the data signals between input and output. The switching
delay must be smaller than 5ns because of signal validity in the communication with the
ULPI PHY. To have a safety gap of 0.5 ns the MAXDELAY is set to 4.5 ns. This is constraint
in the ucf-file as shown in Listing 8. The problem is, that the constraint will not be met if we
use a MAXDELAY of 5 ns, too. In this case the tool limits the rooting effort and the slack on
this wire could be even worse, e.g. - 0.046 ns.

Workaround:
XPS doesn’t support manual optimization of a design, but it is possible to treat timing
failures not as errors. This can be set in the system.xmp with the instruction of Listing 15.

Listing 15: Instruction for XPS to treat timing failures not as errors

EnableParTimingError: O

This command will be ignored when building the design on console, so it is required to use
the GUI of XPS. The option EnableParTimingError can also be disabled under:

Project — Project Options — Design Flow

Remove the check mark for option "Treat timing closure failure as error" as shown in Fig-
ure 6. After that the bitstream can be generated via:

Hardware — Generate Bitstream

Attention:

This workaround is potentially dangerous, as it may hide other timing violations that exist
in the design. Please carefully review all newly calculated timings for the design once the
bitstream has been generated. This can be easily done in the Design Summary under:

mle XPS USB Host Controller

missing link electronics

[~ RO Project Options <@topf> O

m Design Flow

~Design Flow Options

©
x

Default effort level to run FPGA implementation tools is: xflow (single iteration)
xplorer scripts (multiple iterations For best result) has been removed.
Please use smartxplorer in ISE

[J: Treat timing closure failure as an error:

~HDL
@ VHDL () Verilog

~Simulation Test Bench

| Generate test bench template

~Simulation Models

@ Behavioral () Structural () Timing

~ External Memory Simulation

"] Enable External Memory Simulation

[OK H Cancel ” Help]

Figure 6: Project Options to disable EnableParTimingError

Design Overview — Timing Constraints

An example is shown in Figure 7. Check the column Met. Usually all entries should be
stated as Yes. If there is an No analyze the Worst Case Slack in this line. If it is the said
problem with the constraint for ULPI_Dir, this slack must be smaller than 0.5ns! In the
example of Figure 7 it is just -0.001 ns. Again, if there are other timing constraints not met,
you must carefully analyze those timing violations!

Technical Brief 20141216 MissingLinkElectronics.com Page 13

XPS USB Host Controller

mle

onic

missing link elect

M3l ubisaq ealydeln - M3IA flquiassy walshs

_ £ ma fiewwns ubisag 4 _
m 0 0 suzzs0 SUBLO'0 | AVIIAXWW T n/0 JAydowdwAyd zipp SA uab/0 100 dwdw/Wvyas ZHAQ/WYNAS Z8ad, L3N S3A 9L 510113 Bunwi). (%]
”o Mo HmcmNm.o [SueL00 “><._mox<zu /0™ JTAYG WU AYd™ZIppTSA Ua/0 2109 WdW/WYHAS 2HAA/WYHTS 2, ‘mz‘_ ﬁm g%ﬂ%ﬂwﬁ%ﬂ@
0 0 |SULES'0 'SU90'0 | AVIIAXWW TN/ 4 AydowdwAydTzippTsaTUa6/0 3100 DWW /WYHAS 2HA0/WYHAS 28ad, 1IN S3A|FL Py X
0 [[SULES'0 |SU690'0 | AVIIAXVW | /0™y AYddwdwrAydzppTsA uab/g” 210 wdw/WvyaS ZHAA/WYHAS Z8ad, 13N SIA|EL JulesIsu0) (X
0 0 |SUE08'0 SULYO'0 | AVIIAXVW " TN/0JAyddwdurAydTzIppTsATUab/gm 2100 wdw/WvHaS ZHaa/WYHAS Z8ad, 13N SaA[ZL B (%]
0 0 |SUE0g'0 SULpO'0 | AVIIAXVW TN/ Ayd owdurAyd zippTSATuab/0”2100 WdW/NYHAS ZHAA/WYHAS 28Ad, 13N| SaA|LL| i B
0 0 |SUEOS'0 |SULPO'0 | AVIIAXYW " TN/07y AydowdwrAydTzIppTsATuab/07 2100 dWdW/WVHAS ZHAQ/WVHAS 28ad, 13N S3A|0L uc,ssn.z._,t e —
0 0 [SUS08'0 |SUSPO'0 | AVIIAXYW | “n/07J AYd T OwdwAYdTzIppTSATURG/0 3100 DWAW/WYHAS ZHAA/WYHAS 28ad, 1IN S3A| 6 : 314 607 wa3shs g5
0 0 |SUS08'0 SUSYO'0 | AVIIAXVW “Tn/0JAyddwduwrAydTzIppTsATUaB/gm 2100 wdw/WvHAS ZHad/WYHaS Z8ad, 13N saA| 8| 3)4 607 3upg [
0 0 Su/86'0 Q10H _ B o |2|m.F sop 2 3 24 6o uabwis]
0 0 SUZ98'L |SUBED'D dnL3s| ,SdOT4 SO WNL, d¥DIWILOL ,¥aai"30"00 WNL, d4DIWIL WOHH AVTIAXYW = 30700 SL |k 3)4 607 uabied [F —
o o | SU080°0 QIOH | %0SHOH U YTsASTSL,01N0X1D 0TId IS0 Jojesauabyop o Iosesauabypop, o | | — u_w_“w%mm&x a| W
0 0 SUBY6'6 SUSED'D dni3s dYDIWIL AOIY3d = 0LNONTD 0TId DIS 0 103eJ3Ua6 720270 J03IaU3B H0SL [Pl - Bs
0 0 SuZv0'0 QIOH| %OSHOHZ» UIdP7SAS"S1,ZINONTD 071d DIS”0JojeJauab™ypop~g jojesauab yoop, | o | o sabessap uabield (] =
0 0 |SU996'y |SUPE0'0 | dNnu3s) d¥D3WIL OIY3d = ZLNONTD 0TId DIS 07103eJ3Ua6}20]70J03eIaua6 051 | ' SBouenpresicaTsncs B
0 0 |SUSES'0 |SUSLO'0 | AVIIAXYW | " Tn/0 4 AyddDwdwAyd zippTsATUSb/0T 3100 DWAW/WYYAS ZHA0/WYHAS 28ad, 13N S3A| b yi0day ypop F o
0 0 SUBES'0 |SUZLO'0 | AVIIAXYW | " TN/0TJimAyddwdwrAydTzppTsATUa6/0 2100 dwdw/WYHAS 2HAA/WYEAS 28ad, 13N, SaA| € 110day Inould [E] —
0 0 SUBER'0 SUZLQ'D | AVIIAXVW /o) Ayd owdwAyd ZIppTsa uab/0 2100 dwdw/WyHaS Z4aa/WVHAS 2800, 1IN S3A| ¢ : EEEE O
1 1 'sutos'y GuLooo- YAaviaa = AV13AXVYW JIP I I)WZIdIN/WT DHESN T1/0 7150y~ qsnTsdx /07350y gsnTsdx, 13N 1 co_%N___uﬁ_Jw.ﬂ__Msuoz G)
81035 | sJoii3 [|geraiyy| oe)s ! bm_m_mmm_ M o
< | [BulwIL | Bulwi] |3seD) ISIE f15eD ISION HER R i Mmalnano ubisag B @
8y ™

Constraints after bitstream is ready

Review Timing

Figure 7

Page 14

LinkElectronics.com

ssing

[

M

Technical Brief 20141216

m-l_e XPS USB Host Controller

3 The XPS_USB_Host Controller Linux Reference Design

To ease the integration of the XPS_USB_HOST Controller IP Core with Xilinx MicroBlaze
running Linux, MLE has put together an integrated, pre-validated reference design. This
reference design is based on the PLB architecture and uses a big-endian MicroBlaze im-
plementation in a Virtex-5 FPGA. As a hardware platform for USB evaluation and testing
MLE uses the Xilinx ML507 [10] development kit. The following describes the relevant
setup for testing the XPS_USB_HOST Controller IP Core on the ML507. Feel free to use
those settings as an example to make the XPS_USB_HOST Controller IP Core work on
your target hardware.

An AXI-based reference design integrating Linux with a little-endian MicroBlaze is in works.
Please contact us for more information.

3.1 Getting Started

This section gives a step by step instruction on how to build the ML507 MicroBlaze USB
design on a Linux workstation.

3.1.1 Hardware

Go to the hw directory and start a Xilinx EDK 14.7 environment. To build the DTS-file for
the design, type:

make system.dts
When the DTS-file is ready, it is located in the hw directory.
Subsequently start Xilinx Platform Studio (XPS) to implement the hardware, type:
Xps
and open the project:
hw/system.xmp
Then disable treating errors by timing closure, click:
Project - Project Options - Design Flow
and untick the option as shown in Figure 6:
Treat timing closure failure as an error
Next start generation of the bitstream, click:
Hardware - Generate Bitstream
This will take about 30 minutes, depending on the running machine.

After the bitstream is generated, review the timing summary as shown in Figure 7. Click:

Technical Brief 20141216 MissingLinkElectronics.com Page 15

m-l_e XPS USB Host Controller

Design Overview - Timing Constraints

Check the Worst Case Slack in the line with the entry No in the column Met. It must be
smaller than 0.5ns! If the timing is okay, close XPS. The bitstream is can be found in:

hw/implementation/system.bit

3.1.2 Linux

This section gives a step by step instruction on how to build the Linux kernel for the ML507
MicroBlaze USB design. First you have to build the hardware-design and an DTS-File for
the given design. These steps are described above.

Change to a Xilinx EDK 14.7 environment, then checkout the Linux kernel sources. MLE
recommends to use the source code provided by Xilinx. The easiest way to do this is
by cloning the GIT-Repository and checkout the Tag xilinx-v2014.3 by executing in the sw
directory of the design example:

git clone https.//github.com/Xilinx/linux-xinx -b xilinx-v2014.3

Once this is done we must apply a little patch to be able to use the driver for the XPS_USB_HOST
Controller IP Core. This patch only adds a missing include to the file drivers/usb/host/ehci-
xilinx-of.c. Just go into the linux-xInx directory and execute:

cd linux-xinx
git apply ../0001-ehci-xilinx-of.c-added-of _irg-include.patch

Next step is to apply the kernel-configuration. To use the provided config you can execute
the following commands:

cp ../mi507_mb_usb_kernel.config .config

make ARCH=microblaze oldconfig
You must also provide the DTS-File. For this, copy the created DTS-File (or the provided
one) into the sub-folder arch/microblaze/boot/dts by executing:

cp ../mi507_mb_usb.dts arch/microblaze/boot/dts/mI507_mb_usb.dts

Now you are ready to build the Linux kernel by using the so-called method simplelmage.
Here you have to provide the name of the DTS-File to use. For example:

make ARCH=microblaze CROSS COMPILE=microblaze-xilinx-linux-gnu- sim-
plelmage.ml507_mb_usb -j8

uses the DTS-File mI507 _mb_usb.dts from arch/microblaze/boot/dts.

Once you have all the binaries needed you can create the ACE-file and copy it onto a CF-
card. To create the ACE-file you need the bitfile and the kernel image. To get a correct ACE-
File for big-endian (which is used for PLB architectures) you have to follow a workaround:
Check the content of the file generate ace.optas in Listing 16:

Technical Brief 20141216 MissingLinkElectronics.com Page 16

m-l_e XPS USB Host Controller

Listing 16: Content of file generate_ace.opt

-jprog

-board ml507

-target mdm

-hw ../../implementation/system.bit

-elf arch/microblaze/boot/simpleImage .m1507_mb_usb
-debugdevice devicenr 1 cpunr 1 cpu_version microblaze_v72
-ace ../ml507_mb_usb_ace.ace

NoO O WN =

Here hw is the bitfile, elf is the kernel image and ace is the output-file. The debugdevice
must be set to the microblaze v72to force creation of a big-endian ACE-File.

This file gives all the information to the script which creates the ACE-File. To run creation
execute:

xmd -tcl $XILINX_EDK/data/xmd/genace.tcl -opt generate_ace.opt

For the RootFS we suggest the default configuration of Busybox version 1.22 which can be
downloaded from the Xilinx Homepage [13]. For more information please refer to the Xilinx
Wiki page [14].

3.1.3 CF-Card Boot Image

The final step is to prepare the CF-card for the ML507 board. To do this you need a CF-
card and a card reader on your local pc. The CF-card has to be partitioned and formatted
as follows:

Partition 1: 100MB FAT16
Partition 2: 500MB EXT3 (or rest of space left)

To partition the CF-card use fdisk. Execute (you have to be root):
fdisk /dev/sd<X>

In fdisk first delete all partitions if there are any by typing [d] and selecting the partition
number, until the device is empty. Then create the first partition as primary partition by
typing [n] [p] [1] [return] +100M [return]. Create the second partition by typing [n] [p] [2]
[return] [return]. Type [p] and review the partitions. If it is okay write the new table by typing
[w].

The next step is to create the file-systems. For this use mkfs by executing (with root
rights):

mkfs.fat -F 16 /dev/sd<X>1
mkfs.ext3 /dev/sd<X>2

Technical Brief 20141216 MissingLinkElectronics.com Page 17

m-l.e XPS USB Host Controller

ng link electroni

Now you can copy the files onto the CF-card. Copy all the data from the provided cf-
card_bootpartition.tar.gz to the first partition. Replace the file ML50X/cfg0/v200.ace on the

first partition with the ACE-File created.

Copy all contents from the provided cfcard_rootfs.tar.gz to the second partition.

3.1.4 ML507 Board Settings

The ML507 board features a Virtex 5 XC5VFX70T FPGA device. Besides the ML507 board
you will need an add-on board with an ULPI PHY compatible with the XPS_USB_HOST
Controller IP Core. In our example we use an MLE-PHY board with four USB3300 phys

and plug it to the ML507 board as shown in Figure 8.

- +R1R3L%1L
SORRRERANS

o
sv®
o, UoBLPHY

*(c) 2011 by
- mlecorp.cam

Figure 8: ML507 board with MLE/-PHY board

Any pre-settings on the ML507 board have to be done before starting:

» User selectable 1/0 voltage: select 3,3V on J20
(next to the power jack).

» Configuration address and mode DIP switches (SW3): 00010101
(Figure 9(a)).

+ Configuration of clocking options (SW6 on back plane): 10101010
(Figure 9(b)).

» Connect the power-supply to the board.

Technical Brief 20141216 MissingLinkElectronics.com

Page 18

m-l.e XPS USB Host Controller

ng link ele

* Insert the prepared CF-card into the card-slot.

= s e et

- K2t =

(b) SW6
Figure 9: Pre-settings on the ML507 board

Please refer to the Xilinx User Guide [11] for more details of the board.

3.1.5 Starting Up

Once all settings are applied, connect the COM1 of the ML507 board to your workstation
and open a terminal (for example, you can use minicom and connect to /dev/ttyUSBO0 with
the settings 115200 8N1). Then switch on the board via SW1. The Linux system will boot
while printing boot messages into the terminal. The entire boot phase may take about
45 seconds, then the XPS_USB_Host Controller Linux Reference Design system is up and
running.

3.2 About the Design
3.2.1 Design Components

The XPS_USB_Host Controller Linux Reference Design has been created using Xilinx

EDK XPS 14.7. ltis a standard Base System Builder (BSB) project with additional XPS_USB_HOST
Controller IP Core. Table 2 lists the inserted components of the design example. Any fur-

ther details are listed below.

MicroBlaze:
One MicroBlaze processor microblaze_0 is inserted with a system clock frequency of
100 MHz.

xps_uartlite:
The RS232_Uart_1 is adjusted for 115200 baud, 8 data bits, no parity, and 1 stop bit
(115200 8N1).

plb_v46:
mb_plb is the PLB of the MicroBlaze for the common slave components and is running

Technical Brief 20141216 MissingLinkElectronics.com Page 19

mle

—_

XPS USB

Host Controller

Table 2: Overview over components of the design example

Component \ INSTANCE \ HW_VER \ BADSEADDR
microblaze microblaze 0 8.50.c 0x50000000
plb_v46 mb_plb 1.05.a

Imb_v10 ilmb 2.00.b

Imb_v10 dimb 2.00.b
Imb_bram_if cntlr | dimb_cntlr 3.10.c 0x00000000
Imb_bram_if _cntlr | ilmb_cntir 3.10.c 0x00000000
bram_block Imb_bram 1.00.a

xps_uartlite RS232 Uart_1 1.02.a 0x84000000
xps_ethernetlite Ethernet_ MAC 4.00.a 0x81000000
mpmc DDR2_SDRAM 6.06.a 0x50000000
Xps_sysace SysACE_CompactFlash | 1.01.a 0x83600000
xps_timer xps_timer_0 1.02.a 0x83c00000
clock_generator clock_generator_0 4.03.a

mdm mdm_0 2.10.a 0x84400000
proc_sys_reset proc_sys_reset_0 3.00.a

Xps_intc xps_intc_0 2.01.a 0x81800000
plb_v46 plb_v46_0 1.05.a

Xps_usb_host xps_usb_host_0 2.00.a 0x85600000

at 100 MHz. plb_v46_0 is the PLB of the XPS_USB_HOST Controller IP Core running at
100 MHz, too.

xps_usb_host:
xps_usb_host_0 is the instance of the XPS_USB_HOST Controller IP Core. It is included
in version 2.00.a with enabled full-speed mode. This Core supports the two speed modes
high-speed and full-speed. The system clock has a frequency of 60 MHz on ULPI_CLK.
Inputs, outputs and control signals of the XPS_USB_HOST Controller IP Core have to be
constrained with special timing constraints.

3.2.2 1/0-Standards for the ML507 board

Listing 17 shows the I/O-standards for the ML507 board.

Listing 17: 1/0O-standards for the ML507 board

Net
Net
Net
Net
Net
Net
Net
Net
Net
Net
Net

- 0OOVWoONOUA~WN =

xps_usb_host_O_ULPI_Clock_pin IOSTANDARD = LVCMOS33;

xps_usb_host_O_USB_PHY_Reset_pin IOSTANDARD = LVCMOS33;
xps_usb_host_O_ULPI_Dir_pin IOSTANDARD = LVCMO0S33;

xps_usb_host_O_ULPI_Nxt_pin IOSTANDARD = LVCMOS33;

xps_usb_host_O_ULPI_Stp_pin IOSTANDARD = LVCMO0S33;

xps_usb_host_O_ULPI_Data_pin<7> IOSTANDARD = LVCMO0S33;
xps_usb_host_O_ULPI_Data_pin<6> IOSTANDARD = LVCMOS33;
xps_usb_host_O_ULPI_Data_pin<5> IOSTANDARD = LVCMO0S33;
xps_usb_host_O_ULPI_Data_pin<4> IOSTANDARD = LVCMOS33;
xps_usb_host_O_ULPI_Data_pin<3> IOSTANDARD = LVCMO0S33;
xps_usb_host_O_ULPI_Data_pin<2> IOSTANDARD = LVCMOS33;

Technical Brief 20141216

MissingLinkElectronics.com

Page 20

m-l_e XPS USB Host Controller

12
13

©oO~NOOAWN =

—_
W= o

O©CoO~NOORAWN =

Net xps_usb_host_O_ULPI_Data_pin<1> IOSTANDARD
Net xps_usb_host_O_ULPI_Data_pin<0> IOSTANDARD

LVCMOS33 ;
LVCMOS33 ;

3.2.3 Pin-out for the ML507 board

An extension board with ULPI USB PHY, for example a USB3300 high-speed USB transceiver,
is needed to use the XPS_USB_HOST Controller IP Core on the ML507 board. Hereafter
the pin-outs for two PHY boards are listed.

The MLE-PHY has been designed by MLE and can be attached to the ML507 board as
shown in Figure 8. Listing 18 shows the pin-out for the MLE-design ULPI PHY board.

Listing 18: Pin-out for the ML507 board with MLE-PHY

NET =xps_usb_host_O_ULPI_Clock_pin LOC="H33";
NET xps_usb_host_O_ULPI_Data_pin<0> LOC="F34";
NET =xps_usb_host_O_ULPI_Data_pin<1> LOC="H34";
NET xps_usb_host_O_ULPI_Data_pin<2> LOC="G33";
NET =xps_usb_host_O_ULPI_Data_pin<3> LOC="G32";
NET =xps_usb_host_O_ULPI_Data_pin<4> LOC="H32";
NET xps_usb_host_O_ULPI_Data_pin<5> LOC="J32";
NET =xps_usb_host_O_ULPI_Data_pin<6> LOC="J34";
NET xps_usb_host_O_ULPI_Data_pin<7> LOC ="L33";
NET =xps_usb_host_O_ULPI_Stp_pin LOC="M32";

NET xps_usb_host_O_ULPI_Dir_pin LOC="P34";

NET =xps_usb_host_O_ULPI_Nxt_pin LOC="N34";

NET xps_usb_host_O_USB_PHY_Reset_pin LOC="AA34";

The manufacturer Waveshare sells an "USB3300 USB HS Board". This Waveshare-PHY
needs to be connected via manual wiring fitted e.g. to the pin-out of Listing 19.

Listing 19: Pin-out for the ML507 board with Waveshare-PHY "USB3300 USB HS Board"

NET =xps_usb_host_O_ULPI_Clock_pin LOC="AD32";
NET =xps_usb_host_O_ULPI_Data_pin<0> LOC="AA34";
NET xps_usb_host_O_ULPI_Data_pin<1> LOC="N34";
NET =xps_usb_host_O_ULPI_Data_pin<2> LOC="P34";
NET xps_usb_host_O_ULPI_Data_pin<3> LOC="M32";
NET =xps_usb_host_O_ULPI_Data_pin<4> LOC="L33";
NET xps_usb_host_O_ULPI_Data_pin<5> LOC="J34";
NET xps_usb_host_O_ULPI_Data_pin<6> LOC="J32";
NET =xps_usb_host_O_ULPI_Data_pin<7> LOC ="H32";
NET xps_usb_host_O_ULPI_Stp_pin LOC="AH34";

NET =xps_usb_host_O_ULPI_Dir_pin LOC="Y32";

NET xps_usb_host_O_ULPI_Nxt_pin LOC="W32";

NET =xps_usb_host_O_USB_PHY_Reset_pin LOC="Y34";

3.2.4 Software / Linux / Driver

The Linux kernel of the XPS_USB_Host Controller Linux Reference Design is Version 3.15
from Xilinx (tag: xilinx-v2013.4) [12]. In this kernel version the driver for the XPS_USB_HOST
Controller IP Core is already included. In the configuration for the kernel this driver is acti-
vated. This kernel has been compiled with the tool-chain from Xilinx.

Technical Brief 20141216 MissingLinkElectronics.com Page 21

m-l.e XPS USB Host Controller

ng link electroni

The Device-Tree has an entry for the XPS_USB_HOST Controller IP Core.

The RootFS of the XPS_USB_Host Controller Linux Reference Design contains Busybox
version 1.22 which can be downloaded from Xilinx Homepage [13]. For more information
please refer to the Xilinx Wiki page [14].

Technical Brief 20141216 MissingLinkElectronics.com Page 22

m-l_e XPS USB Host Controller

4 Designing with AXI under Vivado

The XPS _USB_HOST Controller IP Core in its versions 2.0 or earlier is PLB-based. This
restricts the use of XPS_USB_HOST Controller IP Core to older versions of the Xilinx tool-
chain and, thereby, to particular FPGA device families as shown below. MLE is actively
working on an AXl-based version of the XPS_USB_HOST Controller IP Core. Please
contact us for more information.

The Processor Local Bus (PLB) is a legacy FPGA-internal bus technology. The Advanced
eXtensible Interface (AXI) is a modern Network-on-Chip (NoC) and available in the three
varieties AX/4 for highly efficient data exchange, AX/4-Lite is the simplified version thereto
and AXI4-Stream for data streams. Instead of a shared bus the AXI NoC uses separated
point to point connections via AXI Interconnect IPs.

PLB is not supported by Xilinx new tool-chain Vivado. Table 3 lists the Xilinx tool-chain
versions with the default and supported kinds of network for MicroBlaze.

Table 3: MicroBlaze with AXl & PLB in Xilinx tool-chain versions

Xilinx version | default | supported

ISE 11.x PLB PLB only
ISE 12.x PLB PLB only
ISE 13.x AXI both, AXI & PLB
ISE 14.x AXI both, AXI & PLB
Vivado AXI AXl only

Petalinux supports PLB until version 2013.04. Petalinux 2013.10 and future versions do
not support PLB but only AXI.

Technical Brief 20141216 MissingLinkElectronics.com Page 23

m-l_e XPS USB Host Controller

5 Analysis and Testing

The following tests have been done by MLE. You can use them as a guide for diagnosing
your XPS_USB_HOST Controller IP Core based FPGA design. Or when you evaluate the
XPS_USB_Host Controller Linux Reference Design which uses the ML507 plus the MLE-
PHY board. Other ULPI USB phys than the USB3300 PHY are supported, but have not
been tested, yet.

5.1 Testing Speed Modes

The functionality of the XPS_USB_HOST Controller IP Core in the speed modes of USB
specification [1] is described in this section.

Low-Speed:
The low-speed mode is not supported by the XPS_USB_HOST Controller IP Core.

Full-Speed:

The full-speed mode has to be enabled when implementing a design as could be seen in
Figure 2 and Listing 1.

High-Speed:

XPS_USB_HOST Controller IP Core is designed for the high-speed mode of USB 2.0, so
this is the best speed mode to use the core.

5.2 Testing USB Device Connectivity

The following USB devices were sorted by the speed modes and tested by MLE with the
listed results. Table 4 shows an overview.

Table 4: versions of XPS_USB_HOST Controller IP Core and license options

device under test | speed mode | result
Keyboard low-speed not supported
Mouse low-speed not supported
Wireless Mouse full-speed fully functional
Webcam full-speed | fully functional
Headset full-speed | fully functional
PL2302 Serial Port | full-speed | fully functional
Hub high-speed fully functional
Flash Drive high-speed fully functional
Card Reader high-speed fully functional

"Full-speed devices are fully functional with enabled full-speed mode in the XPS_USB_HOST Controller IP
Core only.

Technical Brief 20141216 MissingLinkElectronics.com Page 24

m-l_e XPS USB Host Controller

5.2.1 USB Low-Speed Devices

Low-speed is not supported by the XPS_USB_HOST Controller IP Core and for that reason
low-speed devices will not work. However, to help you diagnose such behavior please refer
to the following USB low-speed device tests:

Keyboard: Logitech K120, USB 2.0, firmware 64.0
Mouse: Logitech M90, USB 2.0, firmware 63.00 / 54.00

If e.g. the keyboard gets directly connected to the PHY, dmesg shows the error message
of Listing 20.

Listing 20: dmesg message when the keyboard is directly connected to the PHY

1 |hub 1-0:1.0: Cannot enable port 1. Maybe the USB cable is bad?

2 |xilinx -of -ehci ¢1600000.usb: port 1 cannot be enabled

3 |xilinx -of -ehci c1600000.usb: Maybe your device is not a high speed device?

4 |xilinx -of -ehci c1600000.usb: The USB host controller does not support full speed nor
low speed devics

5 |xilinx -of -ehci ¢1600000.usb: You can reconfigure the host controller to have full
speed support

6 |hub 1-0:1.0: unable to enumerate USB device on port 1

Even with usage of a hub an error occurs and the dmesg message looks like Listing 21.

Listing 21: dmesg message when the keyboard is connected to the PHY via a hub

1 |usb 1-1.3: new low speed USB device using xilinx -of-ehci and address 15
2 |usb 1-1.3: device descriptor read/64, error -32

3 |usb 1-1.3: device descriptor read/64, error -32

4 |usb 1-1.3: new low speed USB device using xilinx-of-ehci and address 16
5 |usb 1-1.3: device descriptor read/64, error -32

6 |usb 1-1.3: device descriptor read/64, error -32

7 |usb 1-1.3: new low speed USB device using xilinx-of-ehci and address 17
8 |usb 1-1.3: device not accepting address 17, error -32

9 |usb 1-1.3: new low speed USB device using xilinx-of-ehci and address 18
10 |usb 1-1.3: device not accepting address 18, error -32

11 |hub 1-1:1.0: unable to enumerate USB device on port 3

5.2.2 USB Full-Speed Devices

Full-speed devices are only supported by the XPS_USB_HOST Controller IP Core if the
full-speed mode has been enabled. The following full-speed devices were tested:
Wireless Mouse: HP A0OX35AA, USB 2.0, firmware 3.20

Webcam: Logitech Webcam Pro 9000, USB 2.0, firmware 0.09

Headset: ASUS HS-W1000 Wireless Audio, USB 1.10, firmware 1.00

PL2302 Serial Port: Prolific Technology, USB 1.10, firmware 3.00

Connecting e.g. the wireless mouse to the XPS_USB_HOST Controller IP Core without
full-speed mode results in the error message of Listing 22.

Technical Brief 20141216 MissingLinkElectronics.com Page 25

mle XPS USB Host Controller

Listing 22: dmesg message when the wireless mouse is directly connected to the PHY with disabled
full-speed mode in the XPS_USB_HOST Controller IP Core

1 |usb 1-1: new high-speed USB device number 2 using xilinx -of-ehci

2 |usb 1-1: Using epO maxpacket: 8

3 |usb 1-1: device descriptor read/all, error 8

4 |usb 1-1: new high-speed USB device number 3 using xilinx -of-ehci

5 |usb 1-1: Using epO maxpacket: 8

6 |usb 1-1: device descriptor read/all, error 8

7 |usb 1-1: new high-speed USB device number 4 using xilinx -of-ehci

8 |usb 1-1: Using epO maxpacket: 8

9 |usb 1-1: device descriptor read/all, error 8

10 |usb 1-1: new high-speed USB device number 5 using xilinx -of-ehci

11 |usb 1-1: Using epO maxpacket: 8

12 |usb 1-1: device descriptor read/all, error 8

13 |xilinx -of -ehci 85600000.usb: port 1 cannot be enabled

14 |xilinx -of -ehci 85600000.usb: Maybe your device is not a high speed device?

15 |xilinx -of -ehci 85600000. usb: The USB host controller does not support full speed nor

low speed devices
16 |xilinx -of -ehci 85600000. usb: You can reconfigure the host controller to have full
speed support

17 |hub 1-0:1.0: unable to enumerate USB device on port 1
If the wireless mouse is connected to the PHY via a high-speed hub, the error message of
Listing 23 can be seen.
Listing 23: dmesg message when the wireless mouse is directly connected to the PHY with disabled

full-speed mode in the XPS_USB_HOST Controller IP Core

1 |usb 1-1.4: new full-speed USB device number 7 using xilinx-of-ehci

2 |usb 1-1.4: device descriptor read/64, error -32

3 |usb 1-1.4: device descriptor read/64, error -32

4 |usb 1-1.4: new full-speed USB device number 8 using xilinx -of-ehci

5 |usb 1-1.4: device descriptor read/64, error -32

6 |usb 1-1.4: device descriptor read/64, error -32

7 |usb 1-1.4: new full-speed USB device number 9 using xilinx-of-ehci

8 |usb 1-1.4: device not accepting address 9, error -32

9 |usb 1-1.4: new full-speed USB device number 10 using xilinx -of-ehci

10 |usb 1-1.4: device not accepting address 10, error -32

11 |hub 1-1:1.0: unable to enumerate USB device on port 4

5.2.3 USB High-Speed Devices

High-speed devices are fully functional with the XPS_USB_HOST Controller IP Core. The
following high-speed devices were tested:

Hub: SKYMASTER 4-Port hub, USB 2.0, firmware 7.02

Flash Drive: CEDA DATE 13, USB 2.0, firmware 1.00

Card Reader: LogiLink USB 2.0 all-in-one card reader, USB 2.0, firmware 1.00

Technical Brief 20141216 MissingLinkElectronics.com Page 26

m-l.e XPS USB Host Controller

5.3 Diagnosing the Evaluation License Time-bomb

The evaluation versions of the XPS_USB_HOST Controller IP Core comprise a time-bomb

that expire after a runtime of eight hours. Listing 24 shows the output message of this
event.

Listing 24: dmesg message after impact of time-bomb

[28824.806005] usb 2-1: USB disconnect, address 2
2 | [28824.810000] sd 0:0:0:0: Device offlined - not ready after error recovery

—_

After that event the Linux system will be still running, but the XPS_USB_HOST Controller
IP Core will be offline. This means that the IP core will not react on any request and switch
off the power enable to the USB PHY.

Technical Brief 20141216 MissingLinkElectronics.com Page 27

m-l_e XPS USB Host Controller

References

[1] USB Implementers Forum:
Universal Serial Specification Revision 2.0

online, October 2014
http://www.usb.org/developers/docs/usb20_docs/

[2] Missing Link Electronics:
XPS USB 2.0 EHCI Host Controller
online, October 2014
http://www.missinglinkelectronics.com/mle/index.php/
menu-products/menu-usb-ehci

[3] Xilinx datasheet DS734:
XPS USB Host Controller (v1.01a)
online, October 2014
http://www.missinglinkelectronics.com/www/files/xps_usb_host.pdf

[4] Xilinx Wiki:
USB Host System Setup
online, October 2014
http://www.wiki.xilinx.com/USB+Host+System+Setup

[5] Xilinx Wiki:
USB Host Controller Driver
online, October 2014
http://www.wiki.xilinx.com/USB+Host+Controller+Driver

[6] Waveshare Electronics:
USB3300 USB HS Board
online, December 2014
http://www.wvshare.com/product/USB3300-USB-HS-Board.htm

[7] Missing Link Electronics:
Missing Link Electronics, Inc. (MLE)
online, October 2014
http://www.MLEcorp. com

[8] Xilinx User Guide UG798:
Xilinx Design Tools: Installation and Licensing Guide
online, October 2014
http://www.xilinx.com/support/documentation/sw_manuals/
xi1inx2012_4/iil.pdf

[9] Microchip Technology Inc, data sheet to USB3300:
Hi-Speed USB Host, Device or OTG PHY with ULPI Low Pin Interface
online, October 2014
http://wwl.microchip.com/downloads/en/DeviceDoc/00001783A . pdf

Technical Brief 20141216 MissingLinkElectronics.com Page 28

http://www.usb.org/developers/docs/usb20_docs/
http://www.missinglinkelectronics.com/mle/index.php/menu-products/menu-usb-ehci
http://www.missinglinkelectronics.com/mle/index.php/menu-products/menu-usb-ehci
http://www.missinglinkelectronics.com/www/files/xps_usb_host.pdf
http://www.wiki.xilinx.com/USB+Host+System+Setup
http://www.wiki.xilinx.com/USB+Host+Controller+Driver
http://www.wvshare.com/product/USB3300-USB-HS-Board.htm
http://www.MLEcorp.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_4/iil.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_4/iil.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/00001783A.pdf

mle XPS USB Host Controller

ssing link ele

[10] Xilinx:
ML507 Evaluation Platform Documentation
online, October 2014
http://www.xilinx.com/products/boards/ml1507/docs.htm

[11] Xilinx User Guide:
ML505/ML506/ML507 EvaluationPlatform
online, October 2014
http://www.xilinx.com/support/documentation/boards_and_kits/
ug347 .pdf

[12] GitHub:
The official Linux kernel from Xilinx, tag: xilinx-v2013.4
online, October 2014
https://github.com/Xilinx/linux-x1lnx/tree/xilinx-v2013.4

[13] Xilinx Wiki:
download rootfs for MicroBlaze
online, October 2014
www.wiki.xilinx.com/file/view/microblaze_complete.cpio.gz/
419243588/microblaze_complete.cpio.gz

[14] Xilinx Wiki:
Build and Modify a Rootfs
online, October 2014
http://www.wiki.xilinx.com/Build+and+Modify+a+Rootfs

Technical Brief 20141216 MissingLinkElectronics.com Page 29

http://www.xilinx.com/products/boards/ml507/docs.htm
http://www.xilinx.com/support/documentation/boards_and_kits/ug347.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug347.pdf
https://github.com/Xilinx/linux-xlnx/tree/xilinx-v2013.4
www.wiki.xilinx.com/file/view/microblaze_complete.cpio.gz/419243588/microblaze_complete.cpio.gz
www.wiki.xilinx.com/file/view/microblaze_complete.cpio.gz/419243588/microblaze_complete.cpio.gz
http://www.wiki.xilinx.com/Build+and+Modify+a+Rootfs

	USB Backgrounder
	Speed Modes of USB
	Bus Topology of USB
	Transfer Types of USB
	USB Hot Plug
	Further Documentation

	The XPS_USB_HOST Controller IP Core
	Supported Features
	Supported Speed Modes
	Revisions and Deliverables
	License Management
	Timing Closure

	The XPS_USB_Host Controller Linux Reference Design
	Getting Started
	Hardware
	Linux
	CF-Card Boot Image
	ML507 Board Settings
	Starting Up

	About the Design
	Design Components
	I/O-Standards for the ML507 board
	Pin-out for the ML507 board
	Software / Linux / Driver

	Designing with AXI under Vivado
	Analysis and Testing
	Testing Speed Modes
	Testing USB Device Connectivity
	USB Low-Speed Devices
	USB Full-Speed Devices
	USB High-Speed Devices

	Diagnosing the Evaluation License Time-bomb

