Tool Options When Debugging an FPGA-Based ECU for Autonomous Driving

Tool Options
When Debugging an

FPGA-Based ECU for
Autonomous Driving

Abstract

We share our findings and experiences when debugging an FPGA-based PCle
Non-Transparent Bridge used in an ECU for Autonomous Vehicles. After explaining key
inner workings of PCle and PCle Non-Transparent Bridge we discuss debugging using
embedded logic analyzers (Xilinx ChipScope / ILA), RTL Simulators (XSim from the Xilinx
Vivado toolsuite as well as Questa Prime from Mentor Graphics) plus Visualizer, also

from Mentor Graphics.

We hope that you find this useful when you are preparing to debug your next FPGA

project.
1. Motivation and Outline

An ECU (Electronic Control Unit) suitable for Autonomous Driving, or better Automated
Driving, requires massive compute performance to deal with the large amounts of
streaming sensor data. A typical use case involves 10 or more cameras plus multiple
Lidar and multiple Radar sensors. This quickly adds up to a data stream of multiple tens
of Gigabits per second. Processing involves classical image processing algorithms (for
example, Edge Detection) as well as DNNs (Deep Neural Networks) like Semantic
Segmentation or Object Recognition. Together with the requirement to compute an
action predictably within a few microseconds, most engineering teams combine

multiple processing devices, CPUs, GPUs, FPGAs, from multiple vendors to tackle this

2019-04-24 © MLE MLE TB-20190424 1

mle

missing link electronics

Tool Options When Debugging an FPGA-Based ECU for Autonomous Driving

compute problem. When we say CPUs or GPUs or FPGAs we actually think of the various
System-on-Chip (SoC) embedded multiple CPU cores or high-performance GPU cores or
Programmable Logic fabric.

PCle is the most promising fabric to connect those CPUs and GPUs and FPGAs (short
processors) to form a reliable high-bandwidth, low-latency network within a single ECU.
Various options exist here. At MLE, we have been utilizing a technology called PCle
Non-Transparent Bridge. Implemented within a single automotive-grade FPGA, the
Xilinx Zynq UltraScale+ MPSoC, not only can we connect multiple CPUs and GPUs and
FPGAs via PCle, but we can also offer flexible interface standards to the various sensors.
And, most importantly, the use of an FPGA in the datapath between sensors and
processors enables Data-in-Motion preprocessing. This so-called DADP (Data Acquisition
and Data Preprocessing) allows to resample and adjust the incoming streaming sensor
data, for example in terms of granularity, to make more efficient use of the CPU or GPU

or FPGA architecture in charge of running the decision making algorithms down-stream.

ng Platform

b

!

Linux / QNX

!

!

[Fig. 1: MLE Processing Platform for Level-4 Autonomous Driving]

2019-04-24 © MLE MLE TB-20190424 2

mle

Tool Options When Debugging an FPGA-Based ECU for Autonomous Driving

Debugging systems like this can be quite a challenge: PCle as a hardware / software
interface means that the problem can lie in the device driver software or in
programmable logic hardware, or both. Multiple CPUs each running a rich operating
system like Linux (including ROS or AUTOSAR Adaptive) tend to drive the system into

unanticipated corner cases which are hard to verify upfront at module level.

Within this document we share with you some tricks and experiences when debugging.
The example used throughout this document is MLE's PCle NTB. As tool options for

debugging we discuss:

e |LA (formerly known as ChipScope) from the Xilinx Vivado toolsuite
e XSim, the RTL simulator from the Xilinx Vivado toolsuite
e Questa Prime from Mentor Graphics

e Visualizer, also from Mentor Graphics

This document is organized as follows: First, we give an introduction into the workings
of PCle - from a software engineers point-of-view as well as from an FPGA designer’s.
Then we will explain PCle Non-Transparent Bridge - as a means to connect multiple
processors via PCle. After that we will dive into a debugging scenario when integrating
PCle NTB. We will discuss the pros & cons of the various debugger options (ILA, XSim,
Questa, Visualizer) and give to you some metrics that may help you in selecting an

efficient debug option. We will finish by sharing our experiences with Mentor Graphics

(not so) new tool, Visualizer.

Enjoy reading!
2. The Workings of PCle

The Peripheral Component Interconnect Express (PCle) standard currently in its fourth
generation (Gen4) is an I/0 interconnect technology defined by PCI-SIG. It is a layer
based protocol that for software is fully backwards compatible to the PCl Local Bus

standard which is replaced by PCle.

The physical layer is separated into a logical and an electrical block. The electrical block
defines a full-duplex high speed serial point-to-point connection with scalable link width
at 1 to 32 lanes and line rates at 2.5 GT/s, 5.0 GT/s, 8.0 GT/s, . The logical block builds the

2019-04-24 © MLE MLE TB-20190424 3

mle

Tool Options When Debugging an FPGA-Based ECU for Autonomous Driving

PCle frame and does the Byte stripping on multiple lanes, the serialization and the
128b/130b line encoding (Gen3).

The Data Link layer on top ensures the data integrity by the ACK/NAK semantic and Flow
Control Credits. A CRC and sequence number is added to a Data Link Layer Packet
(DLLP) before the transport and the DLLP is kept in the output buffer until an

acknowledgment is received.

The Transaction Layer builds a TLP that is a packet from the category memory, 1/0,
configuration or message. Beside the transport of the application’s payload data in a
memory or I/0O transaction, Interrupts and PCl configuration data is delivered inside a
TLP as well. The maximum payload data that is transported with one TLP is determined

by the system and will mostly be 128 B or 256 B.

PCle Layer
Transaction Layer Packet (TLP)
| |
Transaction | |
4B 2B 12/16 B |128/256 4B 4B

[Fig. 2: PCle Layers and Transaction Layer Packets (TLP)]

The PCle topology is hierarchical. The CPU is connected to the Root Complex (RC), which
generates the PCle transactions on behalf of the processor. The RC is integrated into the
CPU in modern systems. I/0 devices implement a PCle Endpoint (EP) and are connected
to the RC directly or via switches. The switch consists of one Upstream Port (UP) and
one or more Downstream Ports (DP). Each device in the PCle topology is identified by an

ID-tripel of Bus/Device/Function number, as well as a region in the CPU address-space.

Inside a PCle switch, the packets are routed between the switch ports on the
Transaction layer by their TLP header information. There are three different routing
mechanisms: Routing by ID for configuration and completion TLPs, by address for
memory- and |/O-requests and the implicit routing for messages to all downstream

ports.

PCle has posted and non-posted transactions. A non-posted transaction requires a

completion TLP to be sent from the receiver back to the requester. E.g. a memory-read

2019-04-24 © MLE MLE TB-20190424 4

mle

Tool Options When Debugging an FPGA-Based ECU for Autonomous Driving

TLP sent by the RC, requests data from an EP. The EP answers with a completion TLP
with the requested data appended. PCle devices may also operate as bus masters for

DMA transactions.

PCle | Endpoint
Root - ——
— PCI
CPU Complex ~— Endpoint
(RC) PCle DP e
UP | ‘
PCI
LB : Endpoint
Switch

[Fig. 3: Topology of PCle with Root Complex, Switch and Endpoints]

PCle replaces the PCl Local Bus (PCl) and from a software point of view is fully
backwards compatible to it. This was done by keeping the interface to software from
PCIl. This means that the addressing of devices, the driver model and the configuration
of devices is PCl compliant. E.g. a switch consists of one upstream port and one or more
downstream ports, but from a PCI point of view each switch port is a PCI-PCI-Bridge that
connects the bridge primary bus with the secondary bus. A link between two PCle

devices is denoted as bus from PCl view but is still a point-to-point connection.

At the beginning of the system's boot-up process, the device topology is unknown. The
RC sends Configuration-TLPs that have to be responded to by the devices with
Completion-TLPs. The Configuration-TLPs contain, amongst other things, the

bus/device/function number a device needs to store in its registers.

Bus3
Switch .
: | = ; EP
RC —— BR
L BR
EP

[Fig. 4: PCle Bus Enumeration]

2019-04-24 © MLE MLE TB-20190424 5

mle

Tool Options When Debugging an FPGA-Based ECU for Autonomous Driving

Each PCle device implements a set of registers, called configuration space. PCle devices
have a PCl configuration space and in addition an extended configuration space for PCle
specific capabilities. This configuration space contains registers for e.g. the device id,
bus/device/function number and a register to enable bus mastering for DMA. The
configuration space contains also the base address registers (BARs) for memory space
and 1/0 space.

3. PCle NTB to Connect Multiple CPUs, GPUs & FPGAs

NTB stands for Non-Transparent Bridge. Unlike in a PCle (transparent) Bridge where the
RC “sees” all the PCle busses all the way to all the Endpoints, an NTB forwards the PCle
traffic between the separate PCle busses like a bridge. Each RC sees the NTB as an
Endpoint device but does not see the other RC and devices on the other side. Means,
everything behind the NTB is not directly visible to the particular RC, thus
“Non-Transparent”.

EP 2 EP h
Mem E Mem | E
CPU S CPU a
|
= !
| |
: - —
o PCle EP Func. 2 - PCle EP Func:: 2 PCle
i } f
M| rec |'PNTE | SNTB M Rec | PNTB |'SNTB —
= I = ! Switch Interconnect
= = [
'I{ranslaticrn Translation, —
a\ e Data Path
&

[Fig. 5: Connectivity via PCle Non-Transparent Bridge]

For each attached RC there is a memory aperture allocated to the NTB within the main
memory of said RC. PCle writes (and reads) are translated across. Given the nature of
PCle so-called Posted Writes, writing data into a remote RC's main memory carries less

overhead than reading data from a remote RC's main memory. Therefore, at MLE for

2019-04-24 © MLE MLE TB-20190424 6

Tool Options When Debugging an FPGA-Based ECU for Autonomous Driving

sending data from one RC to a second RC we fully use this concept of Posted Writes
together with so-called Doorbell Registers to implement a very efficient and
high-performance communication mechanism. Groundwork for this was laid more than
a decade ago by work from Jack Regula' and others? Figure 6 shows this
communication mechanism across an NTB based on a ring buffer structure for the

example of two RCs, Host A and Host B.

£l

Host& . HostB

Transmitter Address Space . Receiver Address Space
(raMO00 N Qw00
paings do Read pointer [~
Shadaw paints o
‘| Read pointer -
1 B
.'I ~x9
! . :
E points 1o . P
: :;-' Write pointer A =h : :
=. 3. . i Write pointer “,_E ! i
, Transmitter System . _x_ Receiver System - !
R A 2 N _.--*"-‘ _x'-' . b -'
S T - 4.

[Fig. 6: Receiving data Using Write-Only Communication and Ring Buffers]

As NTB has been enjoying support in the Open Source Linux kernel we do adhere to this
de facto standard API described in Linux ntb.h® and made our programmable logic

implementation compatible to it.

" https://events.static.linuxfound.org/sites/events/files/slides/Linux%20NTB _0.pdf
2 https://lwn.net/Articles/506761/
3 https://Ixr.missinglinkelectronics.com/linux/include/linux/ntb.h

2019-04-24 © MLE MLE TB-20190424 7

https://events.static.linuxfound.org/sites/events/files/slides/Linux%20NTB_0.pdf
https://lwn.net/Articles/506761/
https://lxr.missinglinkelectronics.com/linux/include/linux/ntb.h

mle

Tool Options When Debugging an FPGA-Based ECU for Autonomous Driving

Unlike in Datacenter applications with their wide PCle busses of 16 or 32 lanes (or even
more) in an automotive ECU you have to be frugal with those high-speed IO lanes. This
means that we cannot use the Daisy Chain connectivity scheme for connecting multiple
RCs (means three or more) which is, for example, described in “Intel Xeon Processor
C5500/C3500 Series Non-Transparent Bridge™: When using four, or less, PCle lanes to
connect, traffic would quickly saturate the PCle links of the RCs on the “inside” of the
Daisy Chain. Therefore at MLE we have implemented a Peer-to-Peer connectivity
scheme which, by the way, can be done quite efficiently in an FPGA in terms of
resources and performance when using Xilinx AXI4 network-on-chip infrastructure’. This
Peer-to-Peer connectivity scheme avoids lookup tables for translating between sender

and receiver PCle Device IDs, something that has to be done using the Daisy Chain
approach.

CPU-0 CPU-3 CPU-4 CPU-7
Host | E Host | E Host | & Host | &
3 3 &]
ECU-0 ECU-1
NTB-0 wes NTB-3 NTB-4 «ss | EPTB-7
I I | I
|
I ! PCle
ECU-2 : ECU-3 ! e
| | Switch Interconnect
> - - > ECU-to-ECU
[[[[
NTB-8 e | NTB-11 NTB-12 | ... | NTB-15
CPU-8 CPU-11 CPU-12 CPU-15
7 - : :
Host | & Host | § Host | & Host é
: & : §| Mot e

[Fig. 7: System-of-Systems with multiple ECUs]

4

https://www.scribd.com/document/261707690/Xeon-c5500-c3500-Non-Transparent-Bridge-Pape
[

5

https://www.xilinx.com/support/documentation/ip_documentation/axis_infrastructure ip suite/v
1 1/pg085-axidstream-infrastructure.pdf

2019-04-24 © MLE MLE TB-20190424 8

https://www.scribd.com/document/261707690/Xeon-c5500-c3500-Non-Transparent-Bridge-Paper
https://www.scribd.com/document/261707690/Xeon-c5500-c3500-Non-Transparent-Bridge-Paper
https://www.xilinx.com/support/documentation/ip_documentation/axis_infrastructure_ip_suite/v1_1/pg085-axi4stream-infrastructure.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axis_infrastructure_ip_suite/v1_1/pg085-axi4stream-infrastructure.pdf

mle

Tool Options When Debugging an FPGA-Based ECU for Autonomous Driving

And, we can also extend connectivity to more than 32 RCs (the PCle Device ID field is
only 5 bits) without any extra measures which would add to the overall communication
latency. This enables you to build a system-of-systems, for example by connecting
multiple ECUs via automotive high-speed Ethernet (10G or soon 25G) as shown in Figure

7 where all 16 CPUs can directly exchange data with all other 15 CPUs via PCle.

Furthermore, one of the key reasons of using multiple CPUs or GPUs or FPGAs in an
automotive application is resilience to hardware failures to deliver a high level of
functional safety according to DIN/ISO 61508 or DIN/ISO 26262. This is why we have
added certain checks into MLE's NTB technology.

The PNTB (Primary NTB) which is in charge of egress PCle traffic, besides other checks,
on-the-fly validates address ranges - easy to do in a Xilinx FPGA - to prevent that a
software on the sending RC sends data from memory spaces other than the memory
space pre-registered for NTB communication. Similarly, the SNTB (Secondary NTB)
which is in charge of ingress PCle traffic checks that communication writes only into
valid address spaces. In combination, this also allows us to maintain a reliable
communication even if a SEU (Single Event Upset) might have flipped an address bit.
Further checks allow to detect malfunction of any RC and to respond to it by rerouting
the PCle traffic to a backup RC.

With all these measure it made implementing MLE's NTB technology quite a challenge -

and this is why we looked closely into good tools for FPGA system debugging.
4. Tool Options for FPGA Debugging

Throughout the rest of this paper we will be looking into FPGA debugging. We start with
a description of our simulation setup including testbench and DUT/UUT, then compare

some aspects of key debugging tools such as

e Xilinx ILA (formerly known as ChipScope),
e Xilinx RTL simulator, XSim,

e Questa Prime from Mentor Graphics,

and then focus on debugging using RTL simulation plus a powerful debugger front-end
called Visualizer.

2019-04-24 © MLE MLE TB-20190424 9

mle

Tool Options When Debugging an FPGA-Based ECU for Autonomous Driving

FPGA debugging is quite different from software debugging (with GDB, for example).
However, because of the rich software aspects of PCle it is not just RTL debugging
either. The example we are using is a “bug” within our NTB block written in Verilog HDL
that is difficult to uncover using RTL module-level simulation. This bug causes wrong
processing of the address in the TLB within the NTB block. The symptom is that certain
PCle Requests got lost on their path from sender interface (A) to receiver interface (B)

(see Figure 8).
4.1 System-Level Simulation of PCle NTB - PHY or PIPE?

Figure 8 shows this system-level setup which is quite typical - and very effective - in

verifying / debugging PCle based hardware/software systems.

Test Bench
PCle Root Port 0 FCle Root Port 1
Agent Agent
| NTE subsys 0 | NTB subsys 1
PCle EF PCle EF
MNTE MWTE
Interconnect

[Fig. 8: Simulation Setup with Testbench and DUT/UUT]

The Testbench instantiates our FPGA TOP Module which comprises two separate
instances of an NTB subsystem, NTB subsys 0 and NTB subsys 1, each of which is our
NTB block connected to a PCle EP (Endpoint) instance from the Xilinx IP library. Both
NTB subsystems are connected through an Interconnect, implementing a so-called
Back-to-Back connection. The Testbench further comprises two instances of a PCle Root
Port Agent (RPA), PCle Root Port 0 Agent (RPAO) and PCle Root Port 1 Agent (RPA1), each

of which is connected to their respective PCle EP via connection (A), and (B). These

2019-04-24 © MLE MLE TB-20190424 10

mle

Tool Options When Debugging an FPGA-Based ECU for Autonomous Driving

agents perform both, generating PCle transactions for stimuli as well as checking the
responses. Built on top of those agents we have implemented scripts that perform
almost a complete run through the startup process of PCle - including the distinct steps
of PCle Enumeration, PCle EP Configuration and PCle NTB Configuration. Simulation
finishes with data transfers between the two hosts by performing PCle Posted Write
transactions which emulate the software. See above for details of the inner workings of
PCle.

In our verification approach we are using two concepts for connecting these agents with
the NTB subsystems - connections at Point (A) and Point (B) in Figure 8: One is PHY-level
the other is PIPE-level.

PHY-level simulation means you simulate PCle at the level of a Multi-Gigabit Transceiver.
Xilinx provides you with a simulation model for those. The benefit of PHY-level
simulation is that you run the same stream of ones and zeros as you would see when
tracing the Rx / Tx SerDes 10s of the FPGA, including certain timing aspects (for example,

so-called PCle code group detection and synchronization of the PCle symbols).

PIPE-level simulation means the PHY Interface for PCl Express (PIPE), basically one layer
up from the PHY layer, excluding the PCS/PMA (analog) layers. Therefore, you cannot
see PCle symbols anymore, like in PHY-level simulation. Means, simulation has much

less details and, therefore, runs much faster.

For both setups, PHY- and PIPE-level simulation we want to share with you an important
metric when debugging: The time spent while waiting for the simulator to run through
the test cases which is an indication for the Turn-Around-Time when interactively

debugging.

Table 1 (for PIPE-level) and Table 2 (for PHY-level) present the runtimes for simulation
using XSim from the Xilinx Vivado toolsuite version 2018.3, Questa Prime 2019.1 from
Mentor Graphics. The latter is for Questa alone as well as for Questa when performing
instrumentation to utilize the Visualizer debugger. To give you some more insight into
debugging PCle we have broken up runtime among the three steps in PCle,

Enumeration, Initialization and Data Transfer.

2019-04-24 © MLE MLE TB-20190424 11

mle

Tool Options When Debugging an FPGA-Based ECU for Autonomous Driving

Simulation
Time [nano
PCle PIPE-Level seconds] Runtime [seconds]
Questa w/
PCle Step XSim Questa Visualizer
EP Enumeration 161,212.0 1,322.0 57.8 68.8
EP Initialization 11,348.0 99.0 6.6 9.3
Data Transfers 83,604.0 1,154.0 111.2 138.9
Total 256,164.0 2,575.0 175.7 217.0
[Table 1: PCle PIPE-Level Simulation Runtimes]
Simulation
Time [nano
PCle PHY-Level seconds] Runtime [seconds]
Questa w/
PCle Step XSim Questa Visualizer
EP Enumeration 161,212.0 5,478.0 566.0 652.5
EP Initialization 11,348.0 225.0 66.2 94.3
Data Transfers 83,604.0 2,805.0 444 4 467 1
Total 256,164.0 8,508.0 1,076.5 1,213.8

[Table 2: PCle PHY-Level Simulation Runtimes]

Our first observation here is that XSim - while being a great, cost-efficient RTL simulator
which is integrated nicely into the Xilinx Vivado toolchain - starts to “run out of steam”
for such system-level PCle simulation setups. While you wait a few minutes when
running Questa, simulation runtimes for XSim can be half an hour at PIPE-level or up to
several hours at PHY-level. The latter we consider as just not practical for FPGA

debugging.

Our second observation is that you can reduce your turn-around-time down to one
third if you are willing to give up details of PHY-level simulation in favor of the faster
PIPE-level simulation. Another viewpoint would be that PHY-level simulation while giving

more details is very feasible with a simulator like Questa!

2019-04-24 © MLE MLE TB-20190424 12

mle

Tool Options When Debugging an FPGA-Based ECU for Autonomous Driving

4.2 FPGA Debugging with Xilinx ILA / ChipScope

Some remarks on using Xilinx ILA / ChipScope for debugging PCle NTB:

Yes, we love Xilinx ILA / ChipScope and it is a tool regularly used from our debug bag of
tricks. The ability to have design visibility into the inner workings of an FPGA is very
helpful, in particular when debugging a Programmable System-on-Chip. It is nicely
enhanced to also inspect the various AXl4-based network-on-chip connections we

typically need.

However, in real life a PCle-based FPGA design integrates many function blocks making
the FPGA gate count (or LUT count) quite large and the compile times quite long. For
example, the compile time including synthesis and place-and-route for one of our PCle
NTB implementations can take a couple of hours on a decent machine. This negatively

impacts our turn-around-time.

Second, Xilinx ILA / ChipScope instantiates large monolithic blocks in an already large
design (from an FPGA utilization point-of-view). With the lower FPGA speed-grade (-1) in
an automotive application high clock frequencies can become a challenge for timing
closure. Thus, it is quite common to instantiate 256-bit wide AXI-Streams to meet
bandwidth requirements, which then requires enough Block RAM for ILA / ChipScope to
sniff multiple 256-bit wide AXI-Streams. Besides longer compile times this can also

cause timing violations because more logic needs to be placed and routed.

Furthermore, debugging with Xilinx ILA / ChipScope is a highly iterative approach
because you do not get full design visibility. Sometimes you find out that you need to
look at more signals which forces you to go back to Square One: Re-instrument and

re-compile.

Overall this makes debugging with ILA / ChipScope become a Plan B, only after we

cannot identify the issue in RTL simulation first.
5. Debugging with Visualizer

Recently, our partners at EDA Direct® introduced us to a new RTL debugger called

Visualizer. Visualizer quite nicely complements our RTL simulation approach with

& www.edadirect.com

2019-04-24 © MLE MLE TB-20190424 13

http://www.edadirect.com/

mle

Tool Options When Debugging an FPGA-Based ECU for Autonomous Driving

Questa. This section is on sharing our observations when debugging a real-life issue in
our NTB block.

The symptom was that certain PCle Requests got lost on their path from the sender
interface (A) to the receiver interface (B) (see Figure 8). The root cause was that address
slicing was off by one bit (thanks to a Verilog Define): In the address encoding of a
Memory Write TLP (see Figure 2) the fields TLP address[C:B] denote the so-called
Partition Access Number while the fields TLP_address[B-1:0] indicate the address offset
within the partition. In our implementation the width parameter B for address slicing

shall be integer 24 instead of 25.

The symptom in RTL simulation was that one test case fails with an error because TLPs

sent through interface (A) were never received at interface (B).

Figure 8 shows the NTB System Level Simulation Test bench, where the FPGA top level is
instantiated as Unit Under Test (UUT) and the PCle Interfaces for both NTB ports are
connected to the PCle Root Port Agents which emulate the PCle Host. In order to locate
the point where the TLPs get lost during transmission, we run the Questa simulation
with Visualizer flags to generate the output database files to be used for debugging in
Visualizer. We then open the database files with Visualizer and start debugging from top
to bottom, beginning with the PCle Root Port 0 Agent's AXI-Stream Interface (A). We add
the signals to the waveform view and group the AXI interfaces (A) and (B). Visualizer

nicely colors the groups automatically, see Figure 9.

Wavet - Curren
File Edit View Options Tools Window

Coo QAAKEEKMM T=Itt F+f 172561629 [: 2|0 4| Diff 172561629/1ps ~ | Freq 0.006/MHz ~ | ‘W [A des PSRN
signal Name values C1 172500000 172660000
= | RP® Agent

z2z2z
ZZZZZZZZZIZZZZIZZZZZIZZZZI2ZZ2ZZZ22TLITZ2ZZT
ZZZZZZZZZZZZIZZZZZIZZIZZZIZZZIIIZZIZIZ
RP RPA1 Agent

[Fig. 9: Visualizer Wave View with RQ/CQ interfaces from DUT to Agents]

Figure 9 shows the Visualizer waveform view. The AXI-Stream Interface (A) from PCle
Root Port 0 Agent (RPAO) to UUT FPGA TOP we named RC for the Xilinx Requester

2019-04-24 © MLE MLE TB-20190424 14

mle

Tool Options When Debugging an FPGA-Based ECU for Autonomous Driving

Request interface. The AXI-Stream Interface (B) from UUT to PCle Root Port 1 Agent we
named CQ for the Xilinx Completer Request interface. The blue colored signal group
“RPAO Agent” with all the Requester Requests (signals named *rg* - shorthand: RQ)
shows packet transfers by TLAST, TVALID and TREADY assertion which show that TLPs are
transferred from the “RPAQ” to the UUT. The turquoise colored signal group “RPA1
Agent” with all Completion Requests (signals named *cg* - shorthand: CQ) shows no
packet transfers from the UUT to the PCle Root Port 1 Agent. This means that the TLPs
are not properly translated from the PCle domain “RPAQ” into the PCle domain “RPA1".

In the next step we investigate the NTB core instance ntb_top to check whether TLPs get
already lost at the primary side of the NTB - indicated in Figure 8 as the path between
connection (C) and connection (D). Visualizer displays the module hierarchy in the
Design View of Figure 10. By expanding the folders, the instance ntb_top_u0 of the NTB

subsystem connected to PCle Root Port 0 Agent is quickly selected.

EDesign _ @Ax [
'stem_u@.ntb_top_u@ - DU <= = &

o glbl :(glbl)
~ @ th_top :(tbh_top)
~ [Tpga_top_u@ :(fpga_top)
v [axis_data_fifo_ieg u@ :(a:
v [axis_data_fifo_ieg ul :(a:
+~ [@ ntb_subsystem_u® :(ntb_sul
v [axis_data_fifo_cc_ud :(

v [0 axis_data_fifo_rqg ue :(
v [0 gen_pcie_ep.pcie_ep_u@
3

[Fig. 10: Design Hierarchy View]

We select the ntb_top_u0 instance and use Visualizer's Variables Window to add inputs
and outputs of the UUT to the waveform. This Variables Window provides very

convenient filters such als input/output, types and wildcards.

2019-04-24 © MLE MLE TB-20190424 15

mle

Tool Options When Debugging an FPGA-Based ECU for Autonomous Driving

. Variables

Show : Multiple . Filter:[*cq’*+*eg* «-] Fo - BRPB A

Name Type
» = m_axis_eg tdata_out[255:0] output wire
v B m_axis_eg tkeep_out[31:0] output wire
W m_axis_eg_tlast_out output wire
+ m_axls_eg_tready_in input wire
= m_axis_eqg_tuser_out[3:0] output wire
B m_axis_eq_twvalid_out output wire
v =] S_axis_cq_tdata_in[255:0] input wire
» = S_axis_cq_tkeep_in[31:0] input wire
+ 5_axis_cg_tlast_in input wire
W S_axis_cq_tready_out output wire
v+ S_axis_cq_tuser_in[87:8] input wire
+ 5_axls_cqg_twvalid in input wire

[Fig. 11: Visualizer's Variables View]

Figure 11 shows the Variables View with the filter set to input/output signal filtering and
wildcards for the ntb_top module’s main TLP interfaces, CQ, which are ingress signals
(*cq*) from RPAO to UUT (connection C) and EG, which are egress signals (*_eg_*) at
connection (D). The signals can easily be added to the waveform view by clicking on the

waveform button in the top right corner.

To analyze the packets at the ntb_top interfaces CQ and EG Visualizer provides features
to define Expressions/Functions on signals. To generate a signal valid_packets that
shows TLP handshakes on the AXI interface, we insert an ‘AND’ expression which is set
on TVALID, TLAST and TREADY for both interfaces. Figures 12 and 13 show how easy this

is: Just select the signals with the cursor, right click and select ‘General Expression'.

2019-04-24 © MLE MLE TB-20190424 16

mle

Tool Options When Debugging an FPGA-Based ECU for Autonomous Driving

Signal Name | view Logic cone
View Connectivity Tracer

: View Time Cone
NT

s_axis cq 5
: Properties
[“s axis cq trea E—_—-

] s_axis_cq_tvalid_in

EWave® - Current ' Transactions »
File Edit View Options Tools
Compare [
e . -
e&ﬂ Q(ﬁaﬁm“ m ‘I:ﬂ. Expresmon 3

]
b
shiftsc |

General Expression Ctrl+E

Unary Expression...
Binary Expression...

Concatenate. ..

Reverse Wave
Frequency Wave
Append/Prepend Bus...
Shift Wave...

xis_cq_tlast_in
Split Bus...

Edge Count

m_axis_eg

| m axis eg tready in

[Fig. 12: Adding an Expression on Signals in the Waveform View]

B2 Expression Builder X

Expression Under Construction

Nameﬂvalid_packets

th_top.fpga_top_u®@.ntb_subsystem_u®.ntb_top u@.s_axis cq_trea
dy_out &
th_top.fpga_top_u®.ntb_subsystem_u@.nth_top_ud.s_axis_cq_tval
id_in &
th_top.fpga_top_u®.ntb_subsystem_u®.ntb_top_u®.s_axis_cq_tlas
t_in

+ || - * Ll & | (JII = A | == 1= Clear
< > ||>=|| <= ||===|| && || || || << | >>| 1 || @ || () Test
Concat Reverse Shift CountOnes

Expression Builder uses Verilog syntax.

Selected Signals

th_top.fpga_top_u®.ntb_subsystem_u®.ntb_top_u@.s_axis_cq_tre
tb_top.fpga_top_u®.ntb_subsystem_u®.ntb_top_u@.s_axis_cq_tva
th_top.fpga top_ u@.ntb_subsystem u®.ntb_top u@.s_axis cq tla

[Fig. 13: Expression Builder View]

2019-04-24 © MLE MLE TB-20190424

17

mle

Tool Options When Debugging an FPGA-Based ECU for Autonomous Driving

Figure 13 shows the Expression Builder View. We define an ‘AND’ expression on the
selected signals for both interfaces. This newly created valid_packets signal we use to
have Visualizer count the signal edges and in fact the number of TLPs. For debugging we
wanted to know how many of the TLPs from interface (C) are being forwarded to
interface (D). For this we use another builtin function of Visualizer: Counting Events

shown in Figure 14 and Figure 15.

v [0 axis_data_fifo_ieg_u® :{é
» (0 axis_data fifo_ieg ul :(a Search Selected Signal... Ctrl+F
+* @ nth_subsystem_u@ :(ntb_s
v [0 axis_data_fifo_cc_u@ :
o axis_data fifo_rq ue :
[gen_pcie_ep.pcie_ep_u@ Undo Ctrl+Z
a
o x1x_int_ctrl u@ :(xlx_:
o x1x_seqnum_fh_if_u® :(Cut
v O ntb_subsystem_ul :(ntb_su Copy
v [profpga_clocksync_u@ :(pr
» O pcie_rootcomplex_xlx_up_age
+ [pcie_rootcomplex_x1x_up_age
o th_monitor_u® :(th_monitor) Delete
o th_report :(tb_report)

Grid Events...

* v w

Copy Special 3]

Add Comment Row... Alt+0

Add Spacer AlT+A

Radix b
Representation »
Wave Display b
Wave Draw b
Wave Height b
Find Wave Point »
Group. .. Shift+G
Ungroup Alt+Shift+G
Add to List Ctrl+T

Add to Event Order

i Transactions b
1 ¥
EWaved - Current Compare)
File Edit View Options Tools W Expression \
Coo FAUQLEMM 1= View Logic Cone 1
Signal Name View Connectivity Tracer 0

View Time Cone

Properties

Jxvalid_packets_cq

cg_tdata_in[255:0]

[Fig. 14: Counting Events of an ‘Expression’ Signal]

2019-04-24 © MLE MLE TB-20190424 18

mle

Tool Options When Debugging an FPGA-Based ECU for Autonomous Driving

& Count Events - Wave0 x
Value transition from: * ~| To: |* - RegEx
Time Range: |Simulation~ ||@ +|/ /172995000 |*

Name Events PosEdge NegEdge Time@@ Time@l %Time@1 DutyCycle
valid packets_cq 106 593 93 171567008 1458000 ©.86014% -
valid packets_eqg 0] 0] 0] 172995600 0] 0% 0.000800
L L3
Count Cancel

[Fig. 15: Count Events View]

Figure 15 shows a total of 53 TLPs at the CQ interface, but 0 TLPs get forwarded by the
NTB via EG interface. This indicates that TLPs get lost already inside the primary NTB

module.

Visualizer provides another nice feature, Connectivity Tracer, shown in Figure 16 which

we now use to trace the source of the EG interface packet assertion backwards.

Find Wave Point 'F

B0 QAR MM Eﬂk&ﬁ Group. .. Shift+6 EBBGIE)

Ungroup Alt+5Shift+G b

File Edit View Options Tools Windg

Signal Mame

Add to List Ctr1+T
Add to Event Order

S_axls_cq

cq_tvalid_ir Transactions

s_axis_cq_tlast_irfEeilETgS

Srvalid 5_C Expression »
View Logic Cone
View Connectivity Tracer
View Time Cone
sort

Properties

[“m_axis_eg tvalid out
m_a eg_tlast_out

[Fig. 16: Start the Connectivity Tracer from the Context Menu]

Simply right click in the EG's TVALID signal and click on ‘View Connectivity Tracer’' to open
the View.

2019-04-24 © MLE MLE TB-20190424 19

Tool Options When Debugging an FPGA-Based ECU for Autonomous Driving

JAEP U wio_uy Ly aep_ti ana
€-% B ~vale: - B oA BBE 04 HAQQ4H0O [mem - [Fo - [1e sl Fe5t JF o 110080100 |2
Flop: |8||1] 2| || Extend: [@||1]||2||w|Max:| 100 4| Pointl:|m_axis_ ~ oy (] |

BUF
axis_eg_tvalid [: m_axis_eg_tvalid_out

[Fig. 17: Connectivity Tracer view]

Double clicking on the left net expands the trace and shows the shows assignments
highlighted in the source code view (see Figure 17). Expanding the trace leads us to the

module p2s_trans that asserts the TVALID signal after parsing and translating the TLP.

j——

R —_
File

Edit View Options Tools Window
Coo QA LKEKMM 1=t Ff « 133816000 3|20 +| Diff 133816000(1ps ~ | Freq 0.007/MHz ~ | W [fEdesE

Signal Name values C1 135000000 14000€
P s_axls_1g_tvalid_in J

p2s_trans s_axis_cqg
| s_axis_cg_tvalid_in
®s_axis_cg_tready_out
xis_cqg_tdata_in[255:8]
tkeep_in[31:0]

[Fig. 18: p2s_trans Interface Groups CQ and EG]

Figure 18 shows these interface groups CQ and EG of the module p2s_trans. The red
lines in the waveform view of the AXIS EG interface group indicate that the AXI-Stream

master interface does not forward any TLPs.

So, what exactly does the module p2s_trans do? The module processes the TLPs by
slicing the header and retrieving the target address, performs the actual address

translation and in case of an invalid access, drops the respective packet. To verify the

2019-04-24 © MLE MLE TB-20190424 20

Tool Options When Debugging an FPGA-Based ECU for Autonomous Driving

module’s internal TLP Header decodings, Visualizer assists you with bus inspections. The
TLP header may be sliced up into Doublewords (PCle TLP Header format is in DWORD)
using the ‘Expression’ — ‘Split Bus' feature (see Figure 19).

s_axls_cq_tdata_in[255:0] p /20080000008500000000
_axis_cqg_tdata_in[255:224]

s_axis_cqg_tdata_in[223:192]
s _axlis cq_tdata_in[191:160]

d
d
| s_axis_cqg_tdata_in[159:128]] 20000000
is_cqg_tdata_in[127:96] :

|
|
|
|
|
|
|
|

abeloeoe

[Fig. 19: Using the ‘Split Bus’ Expression feature to show DWORDs]

As the module mainly parses the address field of the TLP to perform the translation, it
may be convenient to check the address decoding by comparing the internally parsed
values with the current address of TLPs. The data format for this PCle Core transmits
the 64-bit address in the first two DWORDS of a TLP. Using Visualizer's GUI we combine
the DWORDS into one signal by selecting the two immediate signals and right click —
Expression — Concatenate.

For MLE NTB, the upper fields of the address encode the partition number to be
accessed and the lower bits of the address are the actual address offset within a
particular partition. Using Visualizer's GUI, we slice the address field signal into both

parts (63:25, 24:0) by right click — Expression — Slice Operation.

Next, we add the module’s internally decoded signals to the waveform view for
comparison. Using Visualizer's GUI we select both ‘address base offset’ signals and right

click = compare — simple (see Figure 20).

2019-04-24 © MLE MLE TB-20190424 21

Tool Options When Debugging an FPGA-Based ECU for Autonomous Driving

s_axls cg_tdata_1in[255:0

5 1:19_rq tdata jnl255:224 ol
L B % Visualizer - Information x

Size must match when comparing expressions.

Continue

*ﬂ s_axls _cq_tdata_in[63:32

|
|
|
|
|
|
|
|

¥| s_axis_cq tdata_in[31:0
cq_tlp_addr[63:0] P
Jxdbg_tlp_hdr_addr po
part_bar_num[2:0]
Jx dbg_part_bar_num
part_off[23:0]
dbg_part_off

[Fig. 20: Value Comparison of Two Signals]

By comparing the partition number and address offset signals, the tool alerts that the
signal vector widths do not match which points us to the actual bug. By double clicking
on the signal in the waveform, the code view opens with the cursor set at the signal
declaration. The signals’'s width parameter may be seen (hexadecimal tooltip value) by
mouse hovering over the parameter. The bug is now identified because the parameter
shall be 24 instead of 25 (shown in Figure 21).

| (==

C_re9: ' 353 | wire [PART_SIZE WIDTH -1 : 8] part_off;
tdest. 3 AdRASe->100
tdest| | 354 | @wire [PART_IDX WID|PART_SIZE WIDTH = 18 [iim;
trast o=

[Fig. 21: Mouse Hover Tooltip for a Signal Parameter]

PCle as the ubiquitous connectivity fabric between CPUs, GPUs and FPGAs adds
additional challenges during debugging of distributed systems. The key point of this
FPGA debugging example is that you do need a collection of tools and techniques in

order to do your job efficiently: Xilinx XSim from the Vivado toolsuite can help you a lot.

2019-04-24 © MLE MLE TB-20190424 22

mle

Tool Options When Debugging an FPGA-Based ECU for Autonomous Driving

However, in case of debugging PCle-based FPGA designs we recommend to add the fast
RTL simulator Mentor Graphics Questa to your set of tools. Your debug

turn-around-times will shorten significantly!

Complementing Mentor Graphics Visualizer further boosts the effectivity of Questa, first

with a powerful GUI and second with its database that provides full design visibility.
Authors

Andreas Braun, Sr. Engineer, Missing Link Electronics GmbH
Endric Schubert, PhD, CTO, Missing Link Electronics, Inc.

Contact Information

Missing Link Electronics, Inc.
2880 Zanker Road, Suite 203
San Jose, CA95134

USA

+1-408-475-1490

Missing Link Electronics GmbH
Industriestrasse 10
89231 Neu-Ulm

Germany

www.missinglinkelectronics.com

2019-04-24 © MLE MLE TB-20190424 23

http://www.missinglinkelectronics.com/

mle

Tool Options When Debugging an FPGA-Based ECU for Autonomous Driving

About Missing Link Electronics

Founded in 2010, MLE (Missing Link Electronics) is a Member of PCI-SIG, Premier
Member of the Xilinx Alliance offering design services and integrated subsystems (FPGA

IP Cores plus software).
Our Vision

At MLE we share the vision of technology leaders such as IBM and Xilinx: General
purpose compute architectures are running out of steam. Domain-specific compute

architectures have become a necessity to deliver higher compute performance.

This drives compute-hungry applications such as Autonomous Vehicles or Datacenter
Analytics or Deep Neural Network algorithms for Edge Inference to adopt
Field-Programmable Gate-Arrays (FPGA), either as highly integrated, single-chip
Adaptable Compute Acceleration Platforms (ACAP) or as reconfigurable compute
companions tightly coupled to powerful CPUs via links that deliver massive bandwidth

at very low latency.
Our Mission

is supporting customer projects with deep expertise and hands-on design services,
offering pre-validated FPGA subsystems of FPGA blocks integrated with (open source)
software, applying and promoting novel FPGA design methodologies for increased
design productivity, including High-Level Synthesis, and fostering FPGA education via

strong relationships with teaching and research engagements at Universities.

2019-04-24 © MLE MLE TB-20190424 24

