Increase Speed and Save Resources with Simple Coding Style Changes Our Mission: If It Is Packets, We Make It Go Faster! And with packets we mean: Networking using TCP/UDP/IP over 10G/25G/50G/100G Ethernet; PCI Express (PCIe), CXL, OpenCAPI; data storage using SATA, SAS, USB, NVMe; video image processing using HDMI, DisplayPort, SDI, FPD-III. Over the last decade, we have become experts in accelerating software-rich system stacks via offloading CPUs using so-called Domain-Specific Architectures for computing. For implementation, we make heavy use of heterogeneous processing devices such as FPGAs which we program using C++/C/SystemC as well as VHDL and Verilog HDL. ASIC vs. FPGA in Process Acceleration Compared to ASICs, FPGAs are a much more versatile option when it comes to accelerating processes with hardware, as an FPGA can be reconfigured as often as needed. However, one large benefit to ASICs is the possible maximum clock speed that can be reached. As its circuit is optimized for its specific function, it has a smaller footprint, resulting in a faster maximum clock speed. So one aspect of accelerating a process with FPGAs is not only just to redesign that process in hardware and hoping for faster results, but to smartly redesign that process to use as little hardware space as possible, resulting in a higher

To read the full content, please log in or register as an MLE Developer Zone Member.

Existing Users Log In

Please fill in the form below, so we can give you access to the Remote Evaluation System.

    NPAP-10G Remote Eval.NPAP-25G Remote Eval.