CONTACT MLE
We are glad that you preferred to contact us. Please fill our short form and one of our friendly team members will contact you back.


    NPAP-10G Remote Eval.NPAP-25G Remote Eval.


    X
    CONTACT MLE

    High-Speed Camera Recorder Powered by MLE’s Fast FPGA RAID (FFRAID)

    High-Speed Camera Recorder Powered by MLE’s Fast FPGA RAID (FFRAID)

    Excelitas PCO is a pioneer in cameras and optoelectronics, offering distinct platforms for high-speed cameras for a wide range of industrial, scientific, car safety, and aerospace applications.

    The new pco.dimax series offers a unique platform of high-speed streaming cameras that enable clear images with a recording speed of over 2000 fps at a full resolution of 3.6 MPixel. This massive raw data rate of about 80 Gigabits per second (2166 frames per second * 1984 * 1808 pixels per frame * 10 bits per pixel) comes with the challenges to record this image data gapless and lossless!

    MLE helped Excelitas develop the high-speed data acquisition and recording systems by implementing FFRIAD — a Fast FPGA RAID — to offload CPU-intensive tasks and achieve 80 Gbps sustained recording speeds.

    FPGA-Based Systems With MicroTCA

    FPGA-Based Systems With MicroTCA

    Many FPGA-based systems projects are rather low volume and, therefore, favor off-the-shelf hardware over the costs and risks of custom hardware (PCB) design.
    MicroTCA or mTCA or µTCA is a 20+ year old standard from PICMG for implementing embedded systems using off-the-shelf hardware. Most often MicroTCA is used for test & measurement or for scientific applications when application specific IOs and signals need to be processed where FPGAs provide the flexibility and processing performance.
    However, as we will demonstrate in this Technical Brief, MicroTCA carries a huge baggage, and has little to no advantages over other approaches, namely FPGA based System-on-Modules or the “good old” PC architecture.

    Shift-Left Your FPGA Design Projects

    Shift-Left Your FPGA Design Projects

    Summary

    FPGA Full System Stacks comprising off-the-shelf FPGA System-on-Modules (SoM) plus pre-validated FPGA IP Cores and subsystems can greatly accelerate the time-to-market of your FPGA design project. Advantages of FPGA Full System Stacks include:

    1. FPGA developers can rely on a tested and verified subsystem implementation. The concept of re-use increases design productivity while sharing the FPGA subsystem development costs and risks over many users.
    2. Pre-validated FPGA IP-Cores and subsystems make clever use of the different FPGA resources to realize a cost/performance optimized domain-specific architecture.
    3. Software is included in the form of kernel space device drivers, user-space programmer APIs, and sometimes even complete OS images, all nicely tuned for guaranteeing the overall system’s reliability and performance.

    FPGA Full System Stacks from MLE are integrated with select FPGA SoMs from Trenz Electronics and are focused on applications such as:

    • Realiable, Low-Latency, High-Throughput Network Transports
    • High-Speed Data Acquisition
    • Augmented Stereo Computer Vision
    • High-Speed Data Record & Replay

    We describe a design methodology using FPGA Full System Stacks and share our experiences from real customer designs.